Skip to main content
Log in

Mechanical behaviour of trabecular bone of the human femoral head in females

  • Papers
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The ultimate stress, Young's modulus, energy absorbed to ultimate stress, actual and apparent densities were determined for specimens of human trabecular bone taken perpendicular to the subchondral plate from female patients undergoing hip replacement for osteoarthrosis or fracture of the neck of femur and from age matched female cadavers. Higher mechanical properties were found in the major than in either the partial minor weight bearing areas of the femoral head in the cadaveric and the fractured neck of femur groups as well as in the eburnated when compared to the non-eburnated areas of the osteoarthrotic groups. For all areas, the mechanical properties were higher in the osteoarthrotic than the cadaveric femoral heads which were again higher than those in the osteoporotic group. It is concluded that the major weight bearing areas are most affected by the pathological processes which are responsible for either fracture of the neck of femur or osteoarthrotic degradation. Regression analysis was used to relate the mechanical properties with the bone density providing evidence that cadaveric and fractured neck of femur bone can be regarded as mechanically uniform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. G. EVANS and A. I. KING, in “Biomechanical Studies of the Musculo-Skeletal System” edited by F. G. Evans (Chas. C. Thomas, Springfield, Illinois, 1961) p. 112.

    Google Scholar 

  2. J. GALANTE, W. ROSTOKER and R. D. RAY,Cal. Tiss. Res. 5 (1970) 236.

    Google Scholar 

  3. J. H. MCELHANEY, J. L. FOGLE, J. W. MELVIN, R. R. HAYNES, V. L. ROBERTS and N. M. ALEM,J. Biomech. 3 (1970) 495.

    Google Scholar 

  4. C. M. SCHOENFELD, E. P. LAUTENSCHLAGER and P. R. MEYER,Med. and Biol. Eng. 12 (1974) 313.

    Google Scholar 

  5. J. C. BEHRENS, P. S. WALKER and H. SHOJI,J. Biomech. 7 (1974) 201.

    Google Scholar 

  6. P. R. TOWNSEND, P. BAUX, R. M. ROSE, R. E. MEIGLE and E. L. RADIN, ibid.8 (1975) 363.

    Google Scholar 

  7. D. R. CARTER and W. C. HAYES,Science 194 (1976) 1174.

    Google Scholar 

  8. Idem.,,J.B.J.S. 59A (1977) 954.

    Google Scholar 

  9. P. DUCHEYNE, L. HEYMANS, M. MARTENS, E. AERNOUDT, P. D. MEESTER and J. C. MULIER,J. Biomech. 10 (1977) 747.

    Google Scholar 

  10. T. D. BROWN and A. B. FERGUSON,Acta Orthop. Scand. 51 (1980) 429.

    Google Scholar 

  11. J. L. WILLIAMS and J. L. LEWIS,J. Biomech. Eng. 104 (1982) 50.

    Google Scholar 

  12. M. MARTENS, R. VAN AUDEKERCKE, P. DELPORT, P. DE MEESTER and J. C. MULIER,J. Biomech. 16 (1983) 971.

    Google Scholar 

  13. S. A. GOLDSTEIN, D. L. WILSON, D. A. SONSTEGARD and L. S. MATTHEWS, ibid.16 (1983) 965.

    Google Scholar 

  14. F. LINDE and I. HVID, ibid.20 (1987) 83.

    Google Scholar 

  15. P. LEREIM, I. GOLDIE and E. DALBERG,Acta Orthop. Scand. 45 (1974) 614.

    Google Scholar 

  16. I. REIMANN, H. J. MANKIN and C. TRAHAN, ibid.48 (1977) 345.

    Google Scholar 

  17. K. E. TANNER, D. J. SHARP, C. DOYLE, R. R. H. COOMBS and W. BONFIELD, in “Implant Materials in Biofunction”, edited by C. de Putter, G. L. de Lange, K. de Groot and A. J. C. Lee (Elsevier, Amsterdam, 1988) pp. 423–428

    Google Scholar 

  18. M. SINGH, A. R. NAGRATH and P. S. MAINI,J.B.J.S. 52A (1970) 457.

    Google Scholar 

  19. T. SONODA,J. Kyoto Prefectural Univ. Med. 71 (1962) 659.

    Google Scholar 

  20. J. CHALMERS and J. K. WEAVER,J.B.J.S. 53A (1971) 299.

    Google Scholar 

  21. R. HERMANSON,J. Cell Plast. 4 (1968) 46.

    Google Scholar 

  22. T. H. FERRIGNO, in “Rigid Plastic Foams” (Reinhold Publishing Corporation, 1967) p. 150.

  23. L. J. GIBSON,J. Biomech. 18 (1985) 317.

    Google Scholar 

  24. J. C. RICE, S. C. COWIN and J. A. BOWMAN, ibid.21 (1988) 155.

    Google Scholar 

  25. L. SOLOMON, C. M. SCHNITZLER and J. P. BROWETT,Ann. Rheum. Dis. 41 (1982) 118.

    Google Scholar 

  26. J. H. HEALEY, V. J. VIGORITA and J. M. LANE,J.B.J.S. 67A (1985) 586.

    Google Scholar 

  27. T. D. BROWN and D. T. SHAW,J. Biomech. 16 (1983) 373.

    Google Scholar 

  28. D. J. SHARP, K. E. TANNER and W. BONFIELD, ibid.23 (1990) 853.

    Google Scholar 

  29. A. M. PARFITT, M. L. DREZNER, F. H. GLORIEUZ, J. A. KANIS, H. MALLUCHE, P. J. MEUNIER, S. M. OTT and R. R. RECKER,J. Bone Min. Res. 2 (1987) 595.

    Google Scholar 

  30. W. J. WHITEHOUSE and E. D. DYSON,J. Anat. 118 (1974) 417.

    Google Scholar 

  31. W. J. WHITEHOUSE, E. D. DYSON and C. K. JACKSON,J. Anat. 108 (1971) 481.

    Google Scholar 

  32. M. D. GRYNPAS, B. ALBERT, I. KATZ, I. LEIBERMAN and K. P. H. PRITZKE,Cal. Tiss. Int. (In Press) (1990).

  33. J. D. CURREY, in “The Mechanical Adaption of Bones” (Princeton University Press, Princeton USA, 1984) p. 88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deligianni, D.D., Missirlis, Y.F., Tanner, K.E. et al. Mechanical behaviour of trabecular bone of the human femoral head in females. J Mater Sci: Mater Med 2, 168–175 (1991). https://doi.org/10.1007/BF00692976

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692976

Keywords

Navigation