Skip to main content
Log in

Function of the hemoglobin and the gas bubble in the backswimmerAnisops assimilis (Hemiptera: Notonectidae)

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The presence of hemoglobin inAnisops assimilis has been demonstrated to be a vital factor in the physiology of this organism. The hemoglobin is composed of heterogeneous subunits which aggregate upon deoxygenation. This association-dissociation equilibrium confers a steep gradient (n H∼6) to the oxygen equilibrium curve and a low oxygen affinity (P 50∼40 mmHg). Oxygen bound by the hemoglobin is released into a gas bubble enabling the bug to regulate its density around that of water. Thus, energy is conserved during a dive, allowing the animal to remain in mid-water for long periods. This adaptive feature has facilitated the exploitation of an ecological niche available to few other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison AC, Cecil R, Charlewood PA, Gratzer WB, Jacobs S, Snow WS (1960) Haemoglobin of the lamprey,Lampetra fluviatilis. Biochim Biophys Acta 42:43–48

    Google Scholar 

  • Andrews P (1964) Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J 91:222–233

    Google Scholar 

  • Antonini E, Rossi-Fanelli A, Caputo A (1962) Studies on chlorocruorin. I. The oxygen equilibrium ofSpirographis chlorocruorin. Arch Biochem Biophys 97:336–342

    Google Scholar 

  • Antonini E, Wyman J, Bellelli L, Rumen W, Siniscalco M (1964) The oxygen equilibrium of some lamprey haemoglobins. Arch Biochem Biophys 105:404–408

    Google Scholar 

  • Bergtrom G (1977) Partial characterization of haemoglobin of the bug,Buenoa confusa. Insect Biochem 7:313–316

    Google Scholar 

  • Bergtrom G, Gittelman S, Laufer H, Ovitt C (1976) Haemoglobin synthesis inBuenoa confusa (Hemiptera). Insect Biochem 6:595–600

    Google Scholar 

  • Briehl RW (1963) The relation between the oxygen equilibrium and aggregation of subunits in Lamprey haemoglobin. J Biol Chem 238:2361–2366

    Google Scholar 

  • Chung MCM, Ellerton HD (1979) The physico-chemical and functional properties of extracellular respiratory haemoglobins and chlorocruorins. Prog Biophys Mol Biol 35:53–102

    Google Scholar 

  • Dacie JV, Lewis SM (1975) Practical haematology. Livingstone, Edinburgh

    Google Scholar 

  • Dinulescu G (1932) Recherches sur la biologie des Gastrophiles. Anatomie, physiologie, cycle évolutif. Ann Sci Nat (Paris) 15:1–183

    Google Scholar 

  • Ege R (1915) On the respiratory function of the air stores carried by some aquatic insects (Corixidae, Dytiscidae, Notonecta). Z Allg Physiol 17:81–124

    Google Scholar 

  • Falcioni M, Fortuna G, Giardina B, Brunori M, Wyman J (1977) Functional properties of partially oxidized trout hemoglobins. Biochim Biophys Acta 490:171–177

    Google Scholar 

  • Florkin M (1960) Unity and diversity in biochemistry. Pergamon, Oxford

    Google Scholar 

  • Florkin M, Lefebvre L, Laurent Y (1941) Oxygen dissociation curve ofChironomus haemoglobin. Acta Biol Belg 2:305–311

    Google Scholar 

  • Hendrickson WA, Love WE (1971) Structure of lamprey haemoglobin. Nat N Biol 232:197–203

    Google Scholar 

  • Hill AV (1910) The possible effects of the aggregation of haemoglobin on its dissociation curve. J Physiol (Lond) 40:IV-VII

    Google Scholar 

  • Hungerford HB (1922) Oxyhaemoglobin present in backswimmerBuenoa margaritacea Bueno (Hemiptera). Can Entomol 54:262–263

    Google Scholar 

  • Imai K, Yonetani T (1977) The haemoglobin-oxygen equilibrium associated with subunit dissociation. I. An approach with the Hill scheme. Biochim Biophys Acta 490:164–170

    Google Scholar 

  • Keilin D, Wang YL (1946) Haemoglobin ofGastrophilus larvae —purification and properties. Biochem J 40:855–866

    Google Scholar 

  • Krogh A (1941) The comparative physiology of respiratory mechanisms. Dover, New York

    Google Scholar 

  • Lykkeboe G, Johansen K (1978) An O2-Hb ‘Paradox’ in frog blood? Respir Physiol 35:119–127

    Google Scholar 

  • Maizel JV (1969) Acrylamide gel electrophoresis of proteins and nucleic acids. In: Habel K, Salzman NP (eds) Fundamental techniques in virology. Academic Press, New York, pp 125–139

    Google Scholar 

  • Mangum CP (1976) The oxygenation of hemoglobin in lugworms. Physiol Zöol 49:85–99

    Google Scholar 

  • Miller PL (1964a) Possible function of haemoglobin inAnisops. Nature 201:1052

    Google Scholar 

  • Miller PL (1964b) The possible role of haemoglobin inAnisops andBuenoa. Proc R Ent Soc (Lond) Ser A 39:166–175

    Google Scholar 

  • Miller PL (1966) Function of haemoglobin in buoyancy inAnisops pellucens. J Exp Biol 44:529–543

    Google Scholar 

  • Mizukami H, Vinogradov SN (1972) Oxygen association equilibria ofGlycera haemoglobins. Biochim Biophys Acta 285:314–319

    Google Scholar 

  • Perutz MF (1978) Haemoglobin structure and respiratory transport. Sci Am 239:68–86

    Google Scholar 

  • Peters K, Richards FM (1977) Chemical cross-linking: reagents and problems in studies of membrane structure. Ann Rev Biochem 46:523–551

    Google Scholar 

  • Poisson R (1926) L'Anisops producta Fieb (Hemiptera Notonectidae). Observations sur son anatomie et sa biologie. Arch Zool Exp Gén 65:181–208

    Google Scholar 

  • Riggs A (1965) Functional properties of hemoglobins. Physiol Rev 45:619–673

    Google Scholar 

  • Terwilliger RC (1975) Oxygen equilibrium and subunit aggregation of a holothurian haemoglobin. Biochim Biophys Acta 386:62–68

    Google Scholar 

  • Walshe BM (1950) The function of haemoglobin inChironomus plumosus under natural conditions. J Exp Biol 27:73–95

    Google Scholar 

  • Weber K, Osborn M (1969) The reliability of molecular weight determination of SDS-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412

    Google Scholar 

  • Weber RE (1980) Functions of invertebrate hemoglobins with special reference to environmental hypoxia. Am Zool 20:79–101

    Google Scholar 

  • Wigglesworth VB (1943) The fate of haemoglobin inRhodnius prolixus (Hemiptera) and other blood-sucking Arthropods. Proc R Soc Lond [Biol] 131:313–339

    Google Scholar 

  • Wigglesworth VB (1972) The principles of insect physiology, 7th ed. Chapman and Hall, London

    Google Scholar 

  • Wolvekamp HP (1955) Die physikalische Kieme der Wasserinsekten. Experienta 11:294–301

    Google Scholar 

  • Wyman J (1948) Heme proteins. Adv Protein Chem 4:407–531

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, R.M.G., Hudson, M.J. & Brittain, T. Function of the hemoglobin and the gas bubble in the backswimmerAnisops assimilis (Hemiptera: Notonectidae). J Comp Physiol B 142, 515–522 (1981). https://doi.org/10.1007/BF00688984

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00688984

Keywords

Navigation