Skip to main content
Log in

Transport of fluorescent protein tracer in peripheral nerves

  • Original Investigations
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

Evans blue bound to albumin, forming a vividly red fluorescent complex, was injected into the gastrocnemius muscle of suckling and adult mice. Its distribution in the peripheral and central nervous system was studied. The principal findings were as follows:

Marked age dependent differences were observed. In the adult mice a red fluorescence was found in the sciatic nerve restricted to the epi- and perineurium, and there was no staining of the endoneurium. In suckling mice, on the other hand, a red fluorescent material was present also in the endoneurium of the sciatic nerve.

In suckling mice red fluorescent granules in the cytoplasm of the ipsilateral motor neurones of the spinal cord were found. These motor neurones, showing a red fluorescence were restricted to a level corresponding to the entrance of the spinal roots of the sciatic nerve into the spinal cord. In adult mice no such fluorescence was found in the corresponding motor neurones.

This finding is considered to provide a convincing evidence that transport of a substance can take place in peripheral nerves in a disto-proximal direction. Certain similarities to the behaviour of herpes simplex virus infection after peripheral inoculation of virus, as regards the affection of the motor neurones and the differences between suckling and adult mice, are pointed out.

Zusammenfassung

An Albumin gebundenes Evansblau, das einen Komplex mit lebhafter Rotfluorescenz ergibt, wurde in den M. gastrocnemicus von Saug- und erwachsenen Mäusen injiziert. Seine Verteilung im peripheren und zentralen Nervensystem wurde untersucht. Die wichtigsten Befunde sind:

Deutliche altersabhängige Unterschiede wurden angetroffen. Bei erwachsenen Mäusen blieb die Rotfluorescenz auf das Epi- und Perineurium beschränkt und es fand sich keine Anfärbung des Endoneurium. Bei Säugmäusen hingegen war rot fluorescierendes Material auch im Endoneurium des N. ischiadicus vorhanden.

Bei Saugmäusen fanden sich rot fluorescierende Granula im Cytoplasma homolateraler Motoneurone des Rückenmarks. Die Fluorescenz der Nervenzellen war auf das dem Eintritt der Spinalwurzeln des N. ischiadicus entsprechende Rückenmarkssegment beschränkt. Bei adulten Mäusen war eine solche Fluorescenz entsprechender Motoneurone nicht nachweisbar.

Diese Befunde ergeben einen überzeugenden Hinweis dafür, daß in peripheren Nerven ein Substanztransport in disto-proximaler Richtung erfolgen kann. Auf gewisse Ähnlichkeiten mit dem Verhalten des Herpes simplex Virus nach peripherer Virusapplikation im Hinblick auf die Affektion der spinalen Motoneurone sowie die Unterschiede zwischen Saugmäusen und erwachsenen Tieren wird hingewiesen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andervont, H. B.: Activity of herpetic virus in mice. J. infect. Dis.44, 383–393 (1929).

    Google Scholar 

  • Becker, N. H., Hirano, A., Zimmerman, H. M.: Observations of the distribution of exogenous peroxidase in the rat cerebellum. J. Neuropath. exp. Neurol.27, 439–452 (1968).

    Google Scholar 

  • Brightman, M. W.: The intracerebral movement of proteins injected into blood and cerebrospinal fluid of mice. Progr. Brain Res.29, 19–37 (1968).

    Google Scholar 

  • Clasen, R. A., Pandolfi, S., Hass, G. M.: Vital staining, serum albmuin and the blood-brain barrier. J. Neuropath. exp. Neurol.29, 266–284 (1970).

    Google Scholar 

  • Dahlström, A.: Observations on the accumulation of noradrenaline in the proximal and distal parts of peripheral adrenergic nerves after compression. J. Anat. (Lond.)99, 677–689 (1965).

    Google Scholar 

  • Hamberger, A., Hamberger, B.: Uptake of catecholamines and penetration of trypan blue after blood-brain lesions. Z. Zellforsch.70, 386–392 (1966).

    Google Scholar 

  • Holtzman, E., Peterson, E.: Cytochemical studies of protein uptake, lysosomes and GERL in neurons. J. Histochem. Cytochem.16, 503 (1968).

    Google Scholar 

  • Hughes, A.: The growth of embryonic neurites. A study on cultures of chick neural tissue. J. Anat. (Lond.)87, 150–162 (1953).

    Google Scholar 

  • Johnson, R. T.: The pathogenesis of herpes virus encephalitis. II. A cellular basis for the development of resistance with age. J. exp. Med.120, 359–374 (1964).

    Google Scholar 

  • Kapeller, K., Mayor, D.: An electron microscopic study of the early changes distal to a constriction in sympathetic nerves. Proc. roy. Soc. B172, 53–63 (1969).

    Google Scholar 

  • Kristensson, K.: Morphological studies of the neural spread of herpes simplex virus to the central nervous system. Acta neuropath. (Berl.)16, 54–63 (1970).

    Google Scholar 

  • Kristensson, K., Lycke, E., Sjöstrand, J.: Spread of herpes simplex virus in peripheral nerves. Acta neuropath. (Berl.) (in press).

  • Lasek, J.: Bidirectional transport of radioactively labelled axoplasmic components. Nature (Lond.)216, 1212–1214 (1967).

    Google Scholar 

  • Lennette, E. H., Koprowski, H.: Influence of age on the susceptibility of mice to infection with certain neurotropic viruses. J. Immunol.49, 175–191 (1944).

    Google Scholar 

  • Livett, B. G., Geffen, L. B., Austin, L.: Proximo-distal transport of14C-noradrenaline and protein in sympathetic nerves. J. Neurochem.15, 931–939 (1968).

    Google Scholar 

  • Lubińska, L.: Axoplasmic streaming in regenerating and in normal nerve fibres. In: Mechanisms of Neural Regeneration. Progress in brain research, vol. 13, pp. 1–71. Amsterdam: Elsevier 1964.

    Google Scholar 

  • Nakai, J.: Dissociated dorsal root ganglia in tissue culture. Amer. J. Anat.99, 81–129 (1956).

    Google Scholar 

  • Ochs, S., Ranish, N.: Characteristics of the fast transport system in mammalian nerve fibres. J. Neurobiol.1, 247–261 (1969).

    Google Scholar 

  • Olsson, Y.: Studies on vascular permeability in peripheral nerves. Acta neuropath. (Berl.)7, 1–15 (1966).

    Google Scholar 

  • Pomerat, C. M., Hendelman, W. J., Raiborn, C. W., Massey, J. F.: Dynamic activities of nervous tissue in vitro. In: The Neuron, pp. 119–178. Amsterdam: Elsevier 1967.

    Google Scholar 

  • Rinder, L.: Artefactitious extravasation of fluorescent indicators in the investigation of vascular permeability in brain and spinal cord. Acta path. microbiol. scand.74, 333–339 (1968).

    Google Scholar 

  • Rosenbluth, J., Wissig, S. L.: The distribution of exogenous ferritin in toad spinal ganglia and the mechanism of its uptake by neurons. J. Cell Biol.23, 307–325 (1964).

    Google Scholar 

  • Sjöstrand, J.: Fast and slow components of axoplasmic transport in the hypoglossal and vagus nerves of the rabbit. Brain Res.18, 461–467 (1970).

    Google Scholar 

  • Steinwall, O., Klatzo, I.: Double tracer methods in studies on blood-brain barrier dysfunction and brain edema. Acta neurol. scand.41, 591–595 (1965).

    Google Scholar 

  • Watson, W. E.: Centripetal passage of labelled molecules along mammalian motor axons. J. Physiol. (Lond.)196, 122–123P (1968).

    Google Scholar 

  • Weiss, P. A.: Neuronal dynamics and neuroplasmic (“axonal”) flow. Symp. Int. Soc. Cell Biol.8, 3–34 (1969).

    Google Scholar 

  • —, Hiscoe, H.: Experiments on the mechanism of nerve growth. J. exp. Zool.107, 315–396 (1948).

    Google Scholar 

  • Wildy, P.: The progression of herpes simplex virus to the central nervous system of the mouse. J. Hyg. (Lond.)65, 173–192 (1967).

    Google Scholar 

  • Wright, G. P.: Nerve trunks as pathways in infection. Proc. roy. Soc. Med.46, 319–330 (1953).

    Google Scholar 

  • Zelená, J.: Bidirectional shift of mitochondria in axons after injury. Symp. Int. Soc. Cell Biol.8, 73–94 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by a grant, B70-12X-82-06, from the Swedish Medical Research Council. The author wishes to express his gratitude to Assoc. Prof. P. Sourander and Ass. Prof. Y. Olsson for valuable criticism and support of the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristensson, K. Transport of fluorescent protein tracer in peripheral nerves. Acta Neuropathol 16, 293–300 (1970). https://doi.org/10.1007/BF00686894

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00686894

Key-Words

Navigation