Skip to main content
Log in

Phenylene motion in polycarbonate: Influence of tensile stress and chemical modification

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Deuteron NMR was utilized to study phenylene group motions in glassy polycarbonate (PC) as a function of tensile stress and chemical modification. A special stretching device was constructed allowing the application of forces up to 1500 N during the measurement. While cold drawing of PC effects motional restrictions equivalent to a temperature shift of 10 K, a reversible strain near the yield point enhances the ring dynamics slightly. Methyl group substitution at the ortho positions gives rise to even more constraints, shifting the onset of fast ring flips by about 180 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schnell H (1964) Chemistry and Physics of Polycarbonares. Interscience, New York

    Google Scholar 

  2. Kircher K (1987) Kunststoffe 77:993; (1990) Kunststoffe 80:1113

    Google Scholar 

  3. Illers KH, Breuer H (1961) Kolloid-Z 176:110

    Google Scholar 

  4. Litt MH, Torp SJ (1973) Appl Phys 44:4282

    Google Scholar 

  5. Yee AF, Smith SA (1981) Macromolecules 14:54

    Google Scholar 

  6. Spiess HW (1983) Colloid & Polymer Science 261:193

    Google Scholar 

  7. Wehrle M, Hellmann GP, Spiess HW (1987) Colloid & Polymer Science 265:815

    Google Scholar 

  8. Inglefield PT, Amici RM, O'Gara JF, Hung C-C, Jones AA (1983) Macromolecules 16:1552

    Google Scholar 

  9. Schaefer J, Stejskal EO, McKay RA, Dixon WT (1984) Macromolecules 17:1479

    Google Scholar 

  10. Jones AA (1986) In: Komoroski RA (ed) High Resolution NMR Spectroscopy of Synthetic Polymers in Bulk. VCH, Weinheim, pp 247–281

    Google Scholar 

  11. Fischer EW, Hellmann GP, Spiess HW, Hörth FJ, Ecarius U, Wehrle M (1985) Macromol Chem Suppl 12:189

    Google Scholar 

  12. Schaefer D, Hansen M, Blümich B, Spiess HW (1991) J Non-Cryst Solids 131–133:777

    Google Scholar 

  13. Hansen MT, Blümich B, Boeffel C, Spiess HW, Morbitzer L, Zembrod A (1992) Macromolecules 25:5542

    Google Scholar 

  14. Hansen MT, Kulik A, Prins KO, Spiess HW (1992) Polymer Communications 33 (10):2231

    Google Scholar 

  15. Zimmermann H (1989) Liqu Cryst 4:591

    Google Scholar 

  16. Hansen MT (1991) PhD thesis, University of Mainz

  17. Hentschel D, Sillescu H, Spiess HW (1984) Polymer 25:1078

    Google Scholar 

  18. Schmidt C, Blümich B, Spiess HW (1988) J Magn Reson 79:269

    Google Scholar 

  19. Spiess HW (1991) Annu Rev Mater Sci 21:131

    Google Scholar 

  20. Krimm H, Peilstöcker G (1973) In: Vieweg R, Goerden L (eds) Kunststoff-Handbuch. C Hanser, München, Vol VIII, pp 1–245

  21. Koenen JA, Heise B, Kilian HG (1989) J Polym Sci 27:1235

    Google Scholar 

  22. Jho JY, Yee AF (1990) Polymer Preprints 31(1):531

    Google Scholar 

  23. Schmidt C (1984) Diploma thesis, University of Mainz

  24. Wehrle M (1986) PhD thesis, University of Mainz

  25. Sundararajan PR (1989) Macromolecules 22:2149

    Google Scholar 

  26. Hutnik M, Argon AS, Suter UW (1991) Macromolecules 24:5970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, M.T., Boeffel, C. & Spiess, H.W. Phenylene motion in polycarbonate: Influence of tensile stress and chemical modification. Colloid Polym Sci 271, 446–453 (1993). https://doi.org/10.1007/BF00657388

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00657388

Key words

Navigation