Skip to main content
Log in

Activity and stability studies of ultrafine nanoencapsulated catalase and penicillinase

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The enzymes catalase (bovine liver, EC 1.11.1.6) and α-penicillinase (bacillus cereus strain 569, type I, EC 3.5.2.6) were successfully encapsulated in the polyacrylamide matrix. The encapsulation was carried out in the water pool of water/aerosol OT/n-hexane reverse micelles. The polymeric particles of encapsulated enzymes were reasonably monodisperse and had diameters in the range of several tens of nanometers as measured from quasi-elastic laser light scattering. The activity- pH profile of the encapsulated enzymes in buffer followed the same pattern as that of free enzymes. However, the encapsulated enzymes were found to be less active than their free forms. The enzymes in the encapsulated form were more stable (both thermal stability and shelf-life) as compared to free enzymes. The activity of the encapsulated enzymes was found to be dependent on the degree of cross-linking of the polymer matrix. The greater the cross-linking in the matrix, the lesser were the activity of the encapsulated enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang TMS (1964) Science 146:524

    Google Scholar 

  2. Chang TMS, Poznausky MJ (1968) Nature 218:243

    Google Scholar 

  3. Pojnausky MJ, Chang TMS (1969) Proc Can Fed Biol Soc 12:54

    Google Scholar 

  4. Weetal HH (1975) Immobilized Enzymes. Antigens, Antibodies and Peptides, Dekker, New York

    Google Scholar 

  5. Chang TMS (1977) Biomedical Applications of Immobilized Enzymes and Proteins (v 1,2) Plenum Publ, New York

    Google Scholar 

  6. Keynes MH (1980) in Kirk-Othmer, Encyclopedia of Chemical Technology (3rd ed, v 9) p 148, Wiley, New York

    Google Scholar 

  7. Ling GI, Ram strop M, Mattiasson B (1982) Ana Biochem 122:26–32

    Google Scholar 

  8. Abuchowski A, Es T van, Palczu, NC, Davis FF (1977) J Biol Chem 252, 3578–3581

    Google Scholar 

  9. Dingle JT, Jacques PJ, Shaw IH (1979) In Lysomes in Applied Biology and Therapeutics (Ch 23), 6, p 653, North Holland Publ Comp.

  10. Deass PB (1984) In: Microencapsulation and Related Drug Processes, Marcel Dekker, New York

    Google Scholar 

  11. Widder KJ, Green R (eds) (1985) Methods in Enzymology (v 112) Academic Press, Orlando, Florida

    Google Scholar 

  12. Donbrow M (ed) (1992) Microcapsules and Nanoparticles in Medicine and Pharmacy CRC Press, Boca Raton, Florida

    Google Scholar 

  13. Oppenhein RC (1981) Int J Pharm 8:217

    Google Scholar 

  14. Schroder, Stahl AJ (1984) Immunol Methods 70:127

    Google Scholar 

  15. Artursson P, Edman P, Laakso T, Sjoholm I (1984) J Pharm Sci 73:1507

    Google Scholar 

  16. Kreuter J (1993) In: Mitra A (ed) Opthalmic Drug Delievery Systems. Marcel Dekker, New York

    Google Scholar 

  17. Gallardo M, Couarraze, Denizot B, Treupel L, Couvreur P, Puineux (1993) Int J Pharm 100:55–64

    Google Scholar 

  18. Curt T (1989) In: Rosoff M (ed) Controlled Release of Drugs: Polymers and Aggregate Systems VCH Publishers. Inc, New York, pp 98–119

    Google Scholar 

  19. Candau F (1992) In: Paleos CM (ed) Polymerisation in Organised Media Chapter 4, Gordon and Breach Science Publ, Philadelphia

    Google Scholar 

  20. Birrenbach G, Speiser P (1976) J Pharm Sci 65:1763

    Google Scholar 

  21. Khmelnitsky YL, Gladin AK, Roubailo VL, Martinek K, Levashov AV (1992) Eur J Biochem, 206:737–745

    Google Scholar 

  22. Matveeva EG, Levashov AV, Schegolev AA, Ryzhova VV, Polykov VA, Martinek K (1985) Biotekhnologiya, 6:84–93

    Google Scholar 

  23. Rees GD, Nascimento TRJ, Jenta, Robinson BH (1991) Biochim Biophys Acta, 1073

  24. Haering G, Luisi PL (1986) J Phys Chem 90:5892–5895

    Google Scholar 

  25. Quellet C, Eicke HF (1986) Chimia 40:233–238

    Google Scholar 

  26. Speiser P (1984) In: Luisi PL, Straub BE (eds) Reverse Micelles-Technological and Biological Relevance pp 339–346

  27. Hicks GP, Updike SJ (1966) Anal Chem 38:726

    Google Scholar 

  28. Artiomchik WD, Erjomin AN, Metelitza DI (1955) Biokhimiya 55:293–298

    Google Scholar 

  29. Kienev PA, Knott-Hunziker V, Petersson S, Waley SG (1980) Eur J Biochem 109:575

    Google Scholar 

  30. Worthington enzyme manual, Worthington Biochemical Corporation, Freehold, New Jersy, USA 07728, 1972

  31. Ogura Y (1955) Arch Biochem Biophys 57:288–300

    Google Scholar 

  32. Saz AK, Lowery DL, Jackson LJ (1961) J Bacteriology 82:298

    Google Scholar 

  33. Bonner FJ, Wolf R, Luisi PL (1980) J Solid Phase Biochem 5:255

    Google Scholar 

  34. Maitra A (1984) J Phys Chem 88:5122

    Google Scholar 

  35. Munshi N (1994) Ph.D thesis, University of Delhi, Delhi

  36. Chakravarty K, Varshney M, Maitra AN, ‘Stability and Activity studies of α-Penicillinase in Reverse Micelles’ Indian J Biochem Biophysics (Accepted for publication 1994)

  37. Haber J, Maslakiewicz P, Rodakiewicz-Nowak J, Walde P (1993) Eur J Biochem 217:567–573

    Google Scholar 

  38. Clint JH, Collins IR, Williams JA, Robinson BH, Towey TF, Cajean P, Khan-Lodhi A (1993) Faraday Discuss 95:219

    Google Scholar 

  39. Mathew C, Maitra AN (1987) J Surf Sci Technol 3:99

    Google Scholar 

  40. Eryomin AN, Metelitsa DI (1993) Dokl Akad Nouk Belarussi 37(3):52

    Google Scholar 

  41. Trevan MD (1980) In: Immobilized Enzymes — An Introduction and Applications in biotechnology, Chap 2, p 11 John Wiley and Sons

  42. Mori T, Sato T, Tosa T, Chibata I (1972) Enzymologia 43:213

    Google Scholar 

  43. Kawai K, Eguchi Y (1975) J Ferment Technol 53:588

    Google Scholar 

  44. Carr PR, Bowers LD (1980) Immobilized Enzymes in Analytical, Clinical Chemistry- Fundamental and Applications. John Wiley and Sons, Inc. New York, p 375

    Google Scholar 

  45. O'Driscoll KF, Hinberg I, Korus R, Kapoulas A (1974) J Polymer Sci 46:227

    Google Scholar 

  46. Kobayaski T, Laidler KJ (1973) Biochim Biophys Acta 302:1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munshi, N., Chakarvorty, K., De, T.K. et al. Activity and stability studies of ultrafine nanoencapsulated catalase and penicillinase. Colloid Polym Sci 273, 464–472 (1995). https://doi.org/10.1007/BF00656891

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00656891

Key words

Navigation