Skip to main content
Log in

Stability of spherical and rod-like micelles of ionic surfactants, in relation to their counterion binding and modes of hydration

  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Aqueous salt solutions of ionic surfactants in both spherical and rod-like micelles have been treated on the basis of a statistical thermodynamic theory, and the double logarithmic relationship between micelle molecular weight and ionic strength is derived for each micelle. Counterion binding on both micelles are assumed to occur specifically, and their degrees of dissociation are related to the slopes of the linear double logarithmic relations. It is found from the relationship observed for typical surfactants that the effective charge of spherical micelles is 29±4. The degree of dissociation of rod-like micelles of these surfactants is primarily determined by the counterion species, yielding values 0.8 for Na+, 0.4–0.6 for Cl and 0.2–0.3 for Br. Hydrophilic hydration of both micelles can be evaluated from the intercepts of the linear relations. Hydrophilic hydration acts repulsively in spherical micelles, while it is attractive or much less repulsive in rod-like micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ikeda S, Ozeki S, Tsunoda M (1980) J Colloid Interface Sci 73: 27

    Google Scholar 

  2. Hayashi S, Ikeda S (1980) J Phys Chem 84:744

    Google Scholar 

  3. Ozeki S, Ikeda S (1981) Bull Chem Soc Jpn 54:552

    Google Scholar 

  4. Ozeki S, Ikeda S (1982) J Colloid Interface Sci 87:424

    Google Scholar 

  5. Ozeki S, Ikeda S (1984) Colloid Polym Sci 262:409

    Google Scholar 

  6. Imae T, Kamiya R, Ikeda S (1985) J Colloid Interface Sci 108:215

    Google Scholar 

  7. Imae T, Ikeda S (1986) J Phys Chem 90:5216

    Google Scholar 

  8. Imae T, Ikeda S (1987) Colloid Polym Sci 265:1090

    Google Scholar 

  9. Harley GS (1936) Aqueous solutions of paraffin-chain salts. Herman, Paris, pp 40–47

    Google Scholar 

  10. Debye P (1949) Ann New York Acad Sci 51:575

    Google Scholar 

  11. Tartar HV (1955) J Phys Chem 59:1195

    Google Scholar 

  12. Tanford C (1972) J Phys Chem 76:3020

    Google Scholar 

  13. Ikeda S, Hayashi S, Imae T (1981) J Phys Chem 85:106

    Google Scholar 

  14. Imae T, Ikeda S (1984) Colloid Polym Sci 262:497

    Google Scholar 

  15. Ikeda S (1984) J Phys Chem 88:2144

    Google Scholar 

  16. Mayer JE, Goeppert-Mayer MG (1940) Statistical mechanics. John-Wiley, New York, pp 63–67, 138–140 195–199

    Google Scholar 

  17. Kushner LM, Hubbard WD, Parker RA (1957) J Res Nat Bur Stand 59:113

    Google Scholar 

  18. Anacker EW, Rush RM, Johnson JS (1964) J Phys Chem 68:81

    Google Scholar 

  19. Phillips JN, Mysels KJ (1955) J Phys Chem 59:326

    Google Scholar 

  20. Stigter D (1964) J Phys Chem 68:3603

    Google Scholar 

  21. Barry BW, Russel GFJ (1972) J Colloid Interface Sci 40:174

    Google Scholar 

  22. Evans C (1956) J Chem Soc 579

  23. Stigter D, Mysels KJ (1955) J Amer Chem Soc 59:45

    Google Scholar 

  24. Manning GS (1969) J Chem Phys 51:924

    Google Scholar 

  25. Manning GS (1977) Biophys Chem 7:95

    Google Scholar 

  26. Linderstrøm-Lang K (1924) Compt rend lab Carlsberg, Ser Chim 15:no 7

    Google Scholar 

  27. Edsall JT, Wyman J (1961) Biophysical chemistry, Vol 1.. Academic, New York, p 512

    Google Scholar 

  28. Tanford C (1961) Physical chemistry of macromolecules. Wiley, New York, p 465

    Google Scholar 

  29. Manning GS, Zimm BH (1965) J Chem Phys 43:4250

    Google Scholar 

  30. Manning GS (1978) Quat Rev Biophys 11:179

    Google Scholar 

  31. Prins W, Hermans JJ (1955) Proc Kon Ned Akad Wet B 59:97

    Google Scholar 

  32. Princen LH, Mysels KJ (1957) J Colloid Sci 12:594

    Google Scholar 

  33. Shedlovsky L, Jakob GW, Epstein MB (1963) J Phys Chem 67:2075

    Google Scholar 

  34. Sasaki T, Hattori M, Sasaki J, Nukina K (1975) Bull Chem Soc Jpn 48:1397

    Google Scholar 

  35. Cutler SG, Meares P, Hall DG (1978) J Chem Soc Faraday Trans I 74:1758

    Google Scholar 

  36. Backlund S, Rundt K, Birdi KS, Dalesager S (1981) Colloid Polym Sci 259:1105

    Google Scholar 

  37. Zana R (1980) J Colloid Interface Sci 78:1105

    Google Scholar 

  38. Sepúlveda L, Cortés J (1985) J Phys Chem 89:5322

    Google Scholar 

  39. Trap HJL, Hermans JJ (1955) Proc Kon Ned Akad Wet B 58:97

    Google Scholar 

  40. Tartar HV, Lelong ALM (1955) J Phys Chem 59:1195

    Google Scholar 

  41. Tanford C (1973) The hydrophobic effect. Wiley, New York, pp 49–53

    Google Scholar 

  42. Zieliński R, Ikeda S, Nomura H, Kato S (1980) J Colloid Interface Sci 129:175

    Google Scholar 

  43. Zieliński R, Ikeda S, Nomura H, Kato S (1988) J Colloid Interface Sci 125:497

    Google Scholar 

  44. Ikeda S, Tsunoda M, Maeda H (1979) J Colloid Interface Sci 70:448

    Google Scholar 

  45. Hermans KW (1964) J Phys Chem 68:1540

    Google Scholar 

  46. Imae T, Ikeda S (1985) Colloid Polym Sci 263:756

    Google Scholar 

  47. Imae T, Ikeda S (1986) J Colloid Interface Sci 113:449

    Google Scholar 

  48. Nakagaki M (1951) J Chem Soc Jpn, Pure Chem Soc 72:113

    Google Scholar 

  49. Ooshika Y, Ikeda Y (1956) Kolloid Z 145:3

    Google Scholar 

  50. Poland D, Scheraga HA (1966) J Colloid Interface Sci 21:273

    Google Scholar 

  51. Stigter D (1974) J Colloid Interface Sci 47:473

    Google Scholar 

  52. Emerson MF, Holtzer A (1965) J Phys Chem 69:3713

    Google Scholar 

  53. Tanford C (1974) J Phys Chem 78:2469

    Google Scholar 

  54. Gunnarson G, Jönsson B, Wennerstrom (1980) J Phys Chem 84:3114

    Google Scholar 

  55. Evans DF, Ninham BW (1983) J Phys Chem 87:5025

    Google Scholar 

  56. Evans DF, Mitchell DJ, Ninham BW (1984) J Phys Chem 88:6344

    Google Scholar 

  57. Rao I, Ruckenstein E (1987) J Colloid Interface Sci 119:211

    Google Scholar 

  58. Ruckenstein E, Beunen JA (1988) Langmuir 4:77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, S. Stability of spherical and rod-like micelles of ionic surfactants, in relation to their counterion binding and modes of hydration. Colloid Polym Sci 269, 49–61 (1991). https://doi.org/10.1007/BF00654659

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654659

Key words

Navigation