Skip to main content
Log in

Molecular dynamics of cyclic and linear poly(dimethylsiloxanes)

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Dielectric spectroscopy (10−1 Hz to 107 Hz) has been employed to study the molecular dynamics of a series of cyclic and linear polydimethylsiloxanes (PDMS) of various molecular weights ranging from 300 to 10 000 g/mol in the temperature range above the glass transition (from 130 K to 190 K). The observed α-relaxation depends strongly on both molecular weight and structure of the samples. For linear PDMS oligomers, the α-relaxation shifts towards lower temperatures with decreasing molecular weight in good accordance with the Fox-Flory-model. Cyclic PDMS reveals a qualitatively different molecular weight dependence: for a given temperature the α-relaxation time increases with decreasing ring length, but has a maximum for small oligomers (degree of polymerizationn≈6). The shape of relaxation curves and, with it, the relaxation time distribution is independent from length and architecture of the chains The observed experimental findings are in qualitative agreement with dynamic Monte-Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fox TG, Flory PJ (1950) J Appl Phys 21:581

    Google Scholar 

  2. Clarson SJ, Dodgson K, Semlyen JA (1985) Polymer 26:930

    Google Scholar 

  3. Dodgson K, Bannister DJ, Semlyen JA (1980) Polymer 21:633

    Google Scholar 

  4. Edwards CJC, Stepto RFT, Semlyen JA (1980) Polymer 21:781

    Google Scholar 

  5. Clarson SJ, Semlyen JA, Dodgson K (1991) Polymer 32:2823

    Google Scholar 

  6. Bannister DJ, Semlyen JA (1981) Polymer 22:377

    Google Scholar 

  7. DiMarzio EA, Guttman CM (1987) Macromolecules 20:1403

    Google Scholar 

  8. Yang AJ-M, DiMarzio EA (1991) Macromolecules 24:6012

    Google Scholar 

  9. Dodgson K, Bannister DJ, Semlyen JA (1980) Polymer 21:633

    Google Scholar 

  10. Edwards CJC, Stepto RFT, Semlyen JA (1980) Polymer 21:781

    Google Scholar 

  11. Clarson SJ, Semlyen JA, Dodgson K (1991) Polymer 32:2823

    Google Scholar 

  12. Hogen-Esch TE, Toreki W, Butler GB (1987) Polym Prepr (Am Chem Soc Div Polym Chem) 28:343 ibid (1989) 30:129

    Google Scholar 

  13. Pakula T (1987) Macromolecules 20:679

    Google Scholar 

  14. Dodgson K, Sympson D, Semlyen JA (1978) Polymer 19:1285

    Google Scholar 

  15. Semlyen JA, Wright PV (1977) In: Chromatography of Synthetic Polymers and Piopolymers (Ed. R. Epton), Ellis Horwood, Chichester

    Google Scholar 

  16. Adachi H, Adachi K, Ishida Y, Kotaka T (1979) J Polym Sci 17:851

    Google Scholar 

  17. Andrianov KA, Slonimskij GL, Zhdanov AA, Levin VYu, Levin Yu, Godovskij YuK, Moskalenko VA (1972) J Pol Sci Pol Chem Ed 10:1

    Google Scholar 

  18. Kremer F, Boese D, Meier G, Fischer EW (1980) Prog Coll Polym Sci 80:129

    Google Scholar 

  19. Havriliak S, Negami S (1966) J Polym Sci Part C 14:99

    Google Scholar 

  20. Havriliak S, Negami S (1967) Polymer 8:161

    Google Scholar 

  21. Mott NF, Davis EA (1979) Electronic Processes in noncrystalline Materials; Clarendon Press: Oxford, UK

    Google Scholar 

  22. Williams ML, Landel RF, Ferry JD (1955) J Am Chem Soc 77:3701

    Google Scholar 

  23. Ferry JD (1980) Viscoelastic properties of polymers Wiley New York

    Google Scholar 

  24. Kirst KU, Kremer F, Litvinov VM (1993) Macromolecules 26:975

    Google Scholar 

  25. Fischer DJ (1961) J Appl Polym Sci 5:436

    Google Scholar 

  26. Lee CL, Johannson OK, Flaningam OL, Hahn P (1969) Polym Reprints Am Chem Soc 10:1311

    Google Scholar 

  27. Fröhlich H (1958) Theory of Dielectrics Oxford University Press, London

    Google Scholar 

  28. Böttcher CJF (1973) Theory of Electric Polarisation Elsevier Amsterdam

    Google Scholar 

  29. Ikada E, Fukushima H, Watanabe T (1979) J Polym Sci Polym Phys 17:1789

    Google Scholar 

  30. Beevers MS, Mumby SJ, Clarson SJ, Semlyen JA (1983) Polymer 24:1564

    Google Scholar 

  31. Hofmann A (1993) Thesis, University of Mainz

  32. Cates ME, Deutsch JM (1986) J Physique 47:2121

    Google Scholar 

  33. Pakula T, Edling T (1990) in Basic Feature of the Glass Transition; Eds.: Colmenero, J, Alegria A World Scientific New Jersey 1990, 235.

    Google Scholar 

  34. Pakula T, Geyler S (1987) Macromolecules 20:2909

    Google Scholar 

  35. Pakula T, Geyler S (1988) Macromolecules 21:1665

    Google Scholar 

  36. Geyler S, Pakula T (1988) Macromol Chem 9:617

    Google Scholar 

  37. Reiter J, Geyler S, Pakula T (1990) J Chem Phys 93:837

    Google Scholar 

  38. Pakula T (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. E.W. Fischer on the occasion of his 65th birthday “Fast macht' das WLF ihn krank, jetzt raucht er wieder, Gott sei Dank!” (frei nach Wilhelm Busch)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirst, K.U., Kremer, F., Pakula, T. et al. Molecular dynamics of cyclic and linear poly(dimethylsiloxanes). Colloid Polym Sci 272, 1420–1429 (1994). https://doi.org/10.1007/BF00654172

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654172

Key words

Navigation