Skip to main content
Log in

Positive polyacetylene electrodes in aqueous electrolytes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Polyacetylene films, contacted with platinum mesh, have been polarized anodically in aqueous H2SO4, HClO4, HBF4 and H2F2 of medium concentrations (30–70 wt%). Two oxidation peaks are observed, the equivalents of which are

$${\text{(1) 0}}{\text{.045 F mol}}^{ - {\text{1}}} {\text{ CH (2) 0}}{\text{.23 F mol}}^{ - {\text{1}}} {\text{ CH}}$$
(1)

The potential of the Process 1 decreases linearly with increasing acid concentration by 20–40 mV mol−1 dm−3, while the potential of Peak 2 exhibits normal Nernst behaviour (about + 60 mV decade−1. Process 1 is partially reversible, while Process 2 is totally irreversible. From these findings for Process 1 we conclude the reversible insertion of anions into the polyacetylene host lattice, which is primarily oxidized to the polyradical cation, with the co-insertion of acid molecules HA to yield the insertion compound [(CH)+·yA·vyHA] x y⩽4.5% andv=1.5 for H2SO4 and HClO4. In the course of Process 2, the polymer is irreversibly oxidized according to

$$( - ^ \cdot {\text{CH}} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot ^ \oplus {\text{ CH}} - )_{x/2} + 2{\text{H}}_{\text{2}} {\text{O}} \to ( - \mathop {\text{C}}\limits_{\mathop \parallel \limits_{\text{O}} } \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \mathop {\text{C}}\limits_{\mathop \parallel \limits_{\text{O}} } - )_{x/2} + 6{\text{H}}^{\text{ + }} + 5e^ - $$

As this process occurs to some extent even in the potential region of Process 1, a continuous degradation of the host lattice occurs upon cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. Chiang, M. A. Druy, S. C. Gau, A. J. Heeger, E. J. Louis, A. G. McDiarmid, Y. W. Park and H. Shirakawa,J. Amer. Chem. Soc. 100 (1978) 1013.

    Google Scholar 

  2. A. G. McDiarmid and A. J. Heeger,Synth. Metals 1 (1979/80) 101.

    Google Scholar 

  3. R. H. Baughman, S. L. Hsu, G. P. Pez and A. J. Signorelli,J. Chem. Phys. 68 (1978) 5405.

    Google Scholar 

  4. M. Monkenbusch, B. S. Morra and G. Wegner,Makromol. Chem. Rapid Commun. 3 (1982) 69.

    Google Scholar 

  5. S. R. Henning,Prog. Inorg. Chem. 1 (1959) 125.

    Google Scholar 

  6. L. B. Ebert,Ann. Rev. Mater. Sci. 6 (1976) 181. (Especially p. 196).

    Google Scholar 

  7. P. J. Nigrey, A. G. McDiarmid and A. J. Heeger,J. Chem. Soc. Chem. Commun. (1979) 594.

  8. Idem, ibid. (1981) 317.

  9. P. J. Nigrey, D. McInnes, D. P. Nairns, A. G. McDiarmid and A. J. Heeger,J. Electrochem. Soc. 128 (1981) 1651.

    Google Scholar 

  10. A. G. McDiarmid, A. J. Heeger and P. J. Nigrey, European Patent 36 118 (1981).

    Google Scholar 

  11. H. Shirakawa and S. Ikeda,Polym. J. 2 (1971) 231.

    Google Scholar 

  12. Idem, J. Polym. Chem. Ed. 12 (1974) 11.

    Google Scholar 

  13. J. Hocker, W. Wieder and R. Dhein, European Patent 45 908 (1981).

  14. R. T. Gray, European Patent 50 441 (1981).

  15. R. B. Kaner, A. G. McDiarmid and R. J. Mammone, ACS Symposium Series ‘Polymers in Electronics’, Washington 1984.

  16. A. Guiseppi-Elie and G. E. Wnek,J. Chem. Soc. Chem. Commun. (1983) 63.

  17. F. Beck, H. Junge and H. Krohn,Electrochim. Acta 26 (1981) 799.

    Google Scholar 

  18. Idem, Ber. Bunsenges. Phys. Chem. 86 (1982) 704.

    Google Scholar 

  19. F. Beck and H. Krohn, Proceedings of the Symposium ‘Electrochemistry of Carbon’, Cleveland 17–19 August 1983 (Edited by E. Yeageret al.) The Electrochemical Society, Princeton, 1984.

    Google Scholar 

  20. F. Beck and A. Pruß,Electrochim. Acta 28 (1983) 1847.

    Google Scholar 

  21. Idem, J. Electroanal. Chem. 172 (1984) 281.

    Google Scholar 

  22. F. Beck, W. Kaiser and H. Krohn,Angew. Chem. Suppl. (1982) 57.

  23. F. Beck and W. Kaiser, Unpublished results.

  24. D. Nägele and R. Bittihn, ISE Meeting, September 1983, DECHEMA Monographien (1984).

  25. E. Rhodes, ‘Power Sources’ (edited by D. H. Collins) Oxford (1967) p. 1.

  26. H. Krohn, F. Beck and R. Herrmann,Chem. -Ing. Techn. 54 (1982) 530.

    Google Scholar 

  27. F. Will, Electrochemical Society Meeting, San Francisco, May 1983, Extended Abstract No. 554.

  28. H. W. Salzberg and M. Leung,J. Org. Chem. 30 (1965) 2873.

    Google Scholar 

  29. L. Eberson,J. Amer. Chem. Soc. 89 (1967) 4669.

    Google Scholar 

  30. H. P. Boehm, M. Eckel and W. Scholz,Zh. Anorg. Allg. Chem. 353 (1967) 236.

    Google Scholar 

  31. K. Kaneto, M. Maxfield, D. P. Nairns, A. G. McDiarmid and A. J. Heeger,J. Chem. Soc. Farad. Trans. 1 78 (1982) 3417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietz, K.H., Beck, F. Positive polyacetylene electrodes in aqueous electrolytes. J Appl Electrochem 15, 159–166 (1985). https://doi.org/10.1007/BF00620929

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00620929

Keywords

Navigation