Skip to main content
Log in

Dual effect of 2,3-diphosphoglycerate on the Bohr effects of human blood

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The influence of the red cell concentration of 2,3-diphosphoglycerate (2,3-DPG, 0.5–26 μmoles/g erythrocytes) on the “CO2-Bohr effect” (pH varied by CO2 at constant base excess) and the “fixed acid-Bohr effect” (pH varied by fixed acid or base at constantP CO2) was studied in human blood at plasma pH values ranging between pH 7.2 and pH 7.6.

Elevation of red cell 2,3-DPG concentration leads to a numerical decrease of the “CO2-Bohr coefficient” referring to plasma pH. The “fixed acid-Bohr coefficients” are numerically smaller than the corresponding “CO2-Bohr coefficients” and exhibit a maximum at normal red cell 2,3-DPG concentrations. The Bohr coefficients referring to red cell pH are distinctly higher than those referring to plasma pH, especially at high 2,3-DPG levels. This is due on the one hand to the physico-chemical properties of the intact red cell membrane, and on the other hand to a 2,3-DPG-induced decrease in the ratio ΔpHcell/ΔpHplasma.

From the results it is concluded that 2,3-DPG exerts a dual effect on the Bohr coefficients of whole blood which is mediated 1. by the direct effect of 2,3-DPG on the allosteric properties of hemoglobin (as reflected by changes of the Bohr coefficients referring to red cell pH), and 2. by the effect of 2,3-DPG on ΔpHcell/ΔpHplasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnone, A.: X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhemoglobin. Nature (Lond.)237, 146–149 (1972)

    Google Scholar 

  2. Arturson, G., Garby, L., Robert, M., Zaar, B.: The oxygen dissociation curve of normal human blood with special reference to the influence of physiological effector ligands. Scand. J. clin. Lab. Invest.34, 9–14 (1974)

    Google Scholar 

  3. Arturson, G., Garby, L., Wranne, B., Zaar, B.: Effect of 2,3-diphosphoglycerate on the oxygen affinity and on the proton- and carbamino-linked oxygen affinity of hemoglobin in human whole blood. Acta physiol. scand.92, 332–340 (1974)

    Google Scholar 

  4. Bartels, H.: The biological significance of the Bohr effect. In: Oxygen affinity of hemoglobin and red cell acid base status (M. Rørth and P. Astrup, eds.), pp. 717–734. Copenhagen: Munksgaard 1972. New York: Academic Press, 1972

    Google Scholar 

  5. Battaglia, P., Morpurgo, G., Passi, S.: Variability of the Bohr effect in man. Experientia (Basel)27, 321–322 (1971)

    Google Scholar 

  6. Bauer, Ch.: Antagonistic influence of CO2 and 2,3-diphosphoglycerate on the Bohr effect of human hemoglobin. Life Sci.8, 1041–1046 (1969)

    Google Scholar 

  7. Bauer, C.: Reduction of the carbon dioxide affinity of human hemoglobin solutions by 2,3-diphosphoglycerate. Respir. Physiol.10, 10–19 (1970)

    Google Scholar 

  8. Benesch, R. E., Benesch, R., Yu, C. I.: The oxygenation of hemoglobin in the presence of 2,3-diphosphoglycerate. Effect of temperature, pH, ionic strength and hemoglobin concentration. Biochemistry8, 2567–2571 (1969)

    Google Scholar 

  9. de Bruin, S. H., Rollema, H. S., Janssen, L. H. M., van Os, A. J.: The interaction of 2,3-diphosphoglycerate with human deoxy- and oxyhemoglobin. Biochem. biophys. Res. Commun.58, 204–209 (1974)

    Google Scholar 

  10. Bursaux, E., Freminet, A., Poyart, C. F.: The Bohr effect, the Donnan equilibrium and the estimation of P50 in human whole blood. Bull. Physiopath. Resp.8, 755–768 (1972)

    Google Scholar 

  11. Caldwell, P. R. B., Nagel, R. L., Jaffe, E. R.: The effect of oxygen, carbon dioxide, pH and cyanate on the binding of 2,3-diphosphoglycerate to human hemoglobin. Biochem. biophys. Res. Commun.44, 1504–1509 (1971)

    Google Scholar 

  12. Deuticke, B., Duhm, J., Dierkesmann, R.: Maximal elevation of 2,3-diphosphoglycerate concentrations in human erythrocytes: Influence on glycolytic metabolism and intracellular pH. Pflügers Arch.326, 15–34 (1971)

    Google Scholar 

  13. Ditzel, J., Standl, E.: The oxygen transport system during diabetic ketoacidosis and recovery. Diabetologia11, 255–260 (1975)

    Google Scholar 

  14. Duhm, J.: Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on the oxygen affinity and intracellular pH of human erythrocytes. Pflügers Arch.326, 341–356 (1971)

    Google Scholar 

  15. Duhm, J.: Studies on 2,3-diphosphoglycerate: Effects on hemoglobin, glycolysis and on buffering properties of human erythrocytes. In: Erythrocyte structure and function, vol. 1, Progress in clinical and biological research (G. Brewer, ed.), pp. 167–197. New York: Alan R. Liss 1975

    Google Scholar 

  16. Duhm, J.: Glycolysis in human erythrocytes containining elevated concentrations of 2,3-P2-glycerate. Biochim. biophys. Acta (Amst.)385, 68–80 (1975)

    Google Scholar 

  17. Duhm, J.: Influence of 2,3-diphosphoglycerate on the buffering properties of human blood. Role of the red cell membrane. Pflügers Arch.363, 61–67 (1976)

    Google Scholar 

  18. Duhm, J., Gerlach, E.: Metabolism and function of 2,3-diphosphoglycerate in red blood cells. In: The human red cell in vitro (T. Greenwalt and G. A. Jamieson, eds.), pp. 111–148. New York-London: Grune and Stratton 1974

    Google Scholar 

  19. Funder, J., Wieth, J. O.: Chloride and hydrogen ion distribution between human red cells and plasma. Acta physiol. scand.68, 234–245 (1966)

    Google Scholar 

  20. Garby, L., Robert, M., Zaar, B.: Proton- and carbaminolinked oxygen affinity of normal human blood. Acta physiol. scand.84, 482–492 (1972)

    Google Scholar 

  21. Gerlach, E., Deuticke, B.: Eine einfache Methode zur Mikrobestimmung von Phosphat in der Papierchromatographie. Biochem. Z.337, 477–479 (1963)

    Google Scholar 

  22. Gerlach, E., Deuticke, B., Duhm, J.: Phosphat-Permeabilität und Phosphat-Stoffwechsel menschlicher Erythrocyten und Möglichkeiten ihrer experimentellen Beeinflussung. Pflügers Arch.280, 243–274 (1964)

    Google Scholar 

  23. Hilpert, P., Fleischmann, R. G., Kempe, D., Bartels, H.: The Bohr effect related to blood and erythrocyte pH. Amer. J. Physiol.205, 337–340 (1963)

    Google Scholar 

  24. Hlastala, M. P., Woodson, R. D.: Saturation dependency of the Bohr effect: Interactions among H+, CO2 and DPG. J. appl. Physiol.38, 1126–1131 (1975)

    Google Scholar 

  25. Kilmartin, J. V.: Influence of DPG on the Bohr effect of human hemoglobin. FEBS Letters38, 147–148 (1974)

    Google Scholar 

  26. Meier, U., Böning, D., Rubenstein, H. J.: Oxygenation dependent variations of the Bohr coefficient related to whole blood and erythrocyte pH. Effect of lactic and carbonic acid. Pflügers Arch.349, 203–213 (1974)

    Google Scholar 

  27. Messier, A. A., Shaefer, K. E.: The Bohr effect in chronic hypercapnia. Respir. Physiol.19, 26–34 (1973)

    Google Scholar 

  28. Morpurgo, G., Battaglia, P., Carter, N. D., Modiano, G., Passi, S.: The Bohr effect and the red cell 2,3-DPG and Hb content in Sherpas and Europeans at low and at high altitude. Experientia (Basel)28, 1280–1283 (1972)

    Google Scholar 

  29. Naeraa, N., Petersen, E. S., Boye, E., Severinghaus, J. W.: pH and molecular CO2 components of the Bohr effect in human blood. Scand. J. clin. Lab. Invest.18, 96–102 (1966)

    Google Scholar 

  30. Proctor, H. J., Parker, J. C.: Treatment of severe hypoxia by transfusion with red cells high in 2,3-diphosphoglycerate (2,3-DPG). Clin. Res.20, 497 (abstract) (1972)

    Google Scholar 

  31. Riggs, A.: The nature and significance of the Bohr effect in mammalian hemoglobins. J. gen. Physiol.43, 737–752 (1960)

    Google Scholar 

  32. Riggs, A.: Mechanisms of the enhancement of the Bohr effect in mammalian hemoglobins by diphosphoglycerate. Proc. nat. Acad. Sci. (Wash.)68, 2062–2065 (1971)

    Google Scholar 

  33. Rossi-Bernardi, L., Roughton, F. J. W.: The specific influence of carbon dioxide and carbamate compounds in the buffer power and Bohr effects in human hemoglobin solutions. J. Physiol. (Lond.)189, 1–29 (1967)

    Google Scholar 

  34. Ruckpaul, K., Scheler, W., Jung, F.: Zur Veränderung der häm-gekoppelten Ionisation von Proteingruppen in Hämoglobnen verschiedener Spezies durch eine Reihe von Alkylisozyaniden. Acta biol. med. germ.28, 751–759 (1972)

    Google Scholar 

  35. Salhany, J. M., Keitt, A. S., Eliot, R. S.: The rate of deoxygenation of red blood cells: Effect of intracellular 2,3-diphosphoglycerate and pH. FEBS Letters16, 257–261 (1971)

    Google Scholar 

  36. Severinghaus, J. W.: Blood gas calculator. J. appl. Physiol.21, 1108–1116 (1966)

    Google Scholar 

  37. Shappell, S., Lenfant, C. J. M.: Adaptive, genetic and iatrogenic alterations of the oxyhemoglobin-dissociation curve. Anesthesiology37, 127–139 (1972)

    Google Scholar 

  38. Siggaard-Andersen, O.: The acid-base status of the blood. Copenhagen. Munksgaard 1974

    Google Scholar 

  39. Siggaard-Andersen, O., Garby, L.: The Bohr effect and the Haldane effect. Scand. J. clin. Lab. Invest.31, 1–8 (1973)

    Google Scholar 

  40. Siggaard-Andersen, O., Jørgensen, K., Naeraa, N.: Spectrophotometric determination of oxygen saturation in capillary blood. Scand. J. Lab. clin. Invest.14, 298–302 (1962)

    Google Scholar 

  41. Siggaard-Andersen, O., Rørth, M., Nörgaard-Pedersen, B., Sparre-Andersen, O., Johansen, E.: Oxygen-linked hydrogen binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. IV. Thermodynamic relationship between the variables. Scand. J. clin. Lab. Invest.29, 303–320 (1972)

    Google Scholar 

  42. Siggaard-Andersen, O., Salling, N.: Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. II. Studies on whole blood. Scand. J. clin. Lab. Invest.27, 361–366 (1971)

    Google Scholar 

  43. Siggaard-Andersen, O., Salling, N., Nörgaard-Pedersen, B., Rørth, M.: Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. III. Comparison of the Bohr effect and the Haldane effect. Scand. J. clin. Lab. Invest.29, 185–193 (1972)

    Google Scholar 

  44. Suwa, K., Bendixen, H. H.: The Bohr factor: Is it constant? Fed. Proc.31, 355 (abstract) (1972)

    Google Scholar 

  45. Tomita, S., Riggs, A.: Studies of the interaction of 2,3-diphosphoglycerate and carbon dioxide with hemoglobins from mouse, man and elephant. J. biol. Chem.246, 547–554 (1971)

    Google Scholar 

  46. Wood, S. C., Johansen, K.: Adaptation to hypoxia by increased HbO2 affinity and decreased red cell ATP concentration. Nature New Biol.237, 278–279 (1972)

    Google Scholar 

  47. Wranne, B., Woodson, R. D., Detter, J. C.: Bohr effect: Interaction between H+, CO2 and 2,3-DPG in fresh and stored blood. J. appl. Physiol.32, 749–754 (1972)

    Google Scholar 

  48. Wranne, B., Woodson, R. D., Detter, J. C.: The two Bohr effects. Physiological consequences of ligand interaction with hemoglobin. In: Hemoglobin and red cell structure and function. Adv. Exp. Med. Biol., vol. 28 (G. Brewer, ed.), pp. 449–455 New-York-London: Plenum Press 1972

    Google Scholar 

  49. Wyman, J.: Linked functions and reciprocal effects in hemoglobin: A second look. Advanc. Protein Chem.19, 223–286 (1964)

    Google Scholar 

  50. Zachara, B.: The effect of inosine, pyruvate and inorganic phosphate on 2,3-diphosphoglycerate, adenine and hypoxanthine nucleotide synthesis in outdated human erythrocytes. J. Lab. clin. Med.85, 436–444 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duhm, J. Dual effect of 2,3-diphosphoglycerate on the Bohr effects of human blood. Pflugers Arch. 363, 55–60 (1976). https://doi.org/10.1007/BF00587402

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587402

Key words

Navigation