Skip to main content
Log in

Bacterial interactions with chromate

  • Article
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Hexavalent chromium compounds (chromates and dichromates) are highly toxic and are considered as mutagens and carcinogens. These compounds are discharged frequently to the environment as a result of diverse industrial processes. Some microorganisms are able to reduce hexavalent chromium to the less toxic trivalent form. Chromate pollution has promoted the selection of bacterial strains possessing chromate resistance determinants, usually carried by plasmids. Strains combining both abilities, i.e. resistance to and reduction of chromate, are potentially useful for detoxifying chromate polluted waste waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aislabie J & Loutit MW (1984) The effect of effluent high in chromium on marine sediment aerobic heterotrophic bacteria. Marine Environ. Res. 13: 69–79

    Google Scholar 

  • Ajmal M, Nomani AA & Ahmad A (1984) Acute toxicity of chrome electroplating wastes to microorganisms: Adsorption of chromate and chromium (VI) on a mixture of clay and sand. Water Air Soil Pollut. 23: 119–127

    Google Scholar 

  • American Petroleum Institute (1982) The Sources, Chemistry, Fate and Effects of Chromium in Aquatic Environment. American Petroleum Institute, Washington, D.C.

    Google Scholar 

  • Babich H, Schiffenbauer M & Stotzky G (1982) Comparative toxicity of trivalent and hexavalent chromium to fungi. Bull. Environ. Contam. Toxicol. 28: 452–459

    Google Scholar 

  • Beveridge TJ, Forsberg CW & Doyle RJ (1982) Major sites of metal binding inBacillus licheniformis walls. J. Bacteriol. 150: 1438–1448

    Google Scholar 

  • Bidstrup PL & Case RAM (1956) Carcinoma of the lung in workmen in the bichromate industry in Great Britain. Br. J. Ind. Med. 13: 260–264

    Google Scholar 

  • Bopp LH, Chakrabarty AM & Ehrlich HL (1983) Chromate resistance plasmid inPseudomonas fluorescens. J. Bacteriol. 155: 1105–1109

    Google Scholar 

  • Bopp LH & Ehrlich HL (1988) Chromate resistance and reduction inPseudomonas fluorescens LB300. Arch. Microbiol. 150: 426–431

    Google Scholar 

  • Cary EW (1982) Chromium in air, soil and natural waters. In: Langard S (Ed) Biological and Environmental Aspects of Chromium (pp 49–64). Elsevier, Amsterdam

    Google Scholar 

  • Cervantes C & Ohtake H (1988) Plasmid-determined resistance to chromate inPseudomonas aeruginosa. FEMS Microbiol. Lett. 56: 173–176

    Google Scholar 

  • Cervantes C, Ohtake H, Chu L, Misra TK & Silver S (1990) Cloning, nucleotide sequence and expression of the chromate resistance determinant ofPseudomonas aeruginosa plasmid pUM505. J. Bacteriol. 172: 287–291

    Google Scholar 

  • Cervantes C & Silver S (1990) Inorganic cation and anion transport systems ofPseudomonas. In: Silver S, Chakrabarty AM, Iglewski B & Kaplan S (Eds)Pseudomonas: Biotransformations, Pathogenicity and Evolving Biotechnology (pp 359–372). American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Cervantes-Vega C, Chávez J, Córdova NA, de laMora P & Velasco JA (1986) Resistance to metals byPseudomonas aeruginosa clinical isolates. Microbios 48: 159–163

    Google Scholar 

  • Drucker H, Garland TR & Wildung RE (1982) Metabolic response of microbiota to chromium and other metals. In: Kharasch N (Ed) Trace Metals in Health and Disease (pp 1–19). Raven Press, New York.

    Google Scholar 

  • Efstathiou JD & McKay LL (1977) Inorganic salts resistance associated with a lactose-fermenting plasmid inStreptococcus lactis. J. Bacteriol. 130: 257–265

    Google Scholar 

  • Elinder CG (1984) Metabolism and toxicity of metals. In: Nriagu JO (Ed) Changing Metal Cycles and Human Health (pp 265–274). Springer-Verlag, Berlin

    Google Scholar 

  • Enterline PE (1974) Respiratory cancer among chromate workers. J. Occup. Med. 16: 523–526

    Google Scholar 

  • Gruber JE & Jennette KW (1978) Metabolism of the carcinogen chromate by rat liver microsomes. Biochem. Biophys. Res. Commun. 82: 700–706

    Google Scholar 

  • Gvozdyak PL, Mogilavich NF, Rylskii AF & Grishchenko NI (1986) Reduction of hexavalent chromium by collection strains of bacteria. Mikrobiologiya 55: 962–965

    Google Scholar 

  • Horitsu H, Futo S, Miyazawa Y, Ogai S & Kawai K (1987) Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerantPseudomonas ambigua G-1. Agric. Biol. Chem. 51: 2417–2420

    Google Scholar 

  • Horitsu H, Futo S, Ozawa K & Kawai K (1983) Comparison of characteristics of hexavalent chromium tolerant bacterium,Pseudomonas ambigua G-1, and its hexavalent chromium-sensitive mutant. Agric. Biol. Chem. 47: 2907–2908

    Google Scholar 

  • Ishibashi Y, Cervantes C & Silver S (1990) Chromium reduction inPseudomonas putida. Appl. Environ. Microbiol. 56: 2268–2270

    Google Scholar 

  • Komori K, Wang P, Rivas A, Toda K & Ohtake H (1990) Biological removal of toxic chromium using anEnterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol. Bioeng. 35: 951–954

    Google Scholar 

  • Kvasnikov EI, Stepanyuk VV, Klushnikova TM, Serpokrylov NS, Simonova GA, Kasatkina TP & Panchenko LP (1985) A new chromium-reducing gram variable bacterium with mixed type of flagellation. Mikrobiologiya 54: 83–88

    Google Scholar 

  • Lebedeva EV & Lyalikova NN (1979) Reduction of crocoite byPseudomonas chromatophila sp. nov. Mikrobiologiya 48: 517–522

    Google Scholar 

  • Levis AG & Bianchi V (1982) Mutagenic and cytogenetic effects of chromium compounds. In: Langard S (Ed) Biological and Environmental Aspects of Chromium (pp 171–208). Elsevier, Amsterdam

    Google Scholar 

  • Luli GW, Talnagi JW, Strohl WR & Pfister RM (1983) Hexavalent chromium-resistant bacteria isolated from river sediments. Appl. Environ. Microbiol. 46: 846–854

    Google Scholar 

  • Maeda Y, Shoji Y, Yoneda A & Azumi T (1984) Preliminary studies on treatment of chromium tannery waste sludge by anaerobic digestion. J. Ferment. Technol. 62: 421–427

    Google Scholar 

  • Mertz W (1969) Chromium occurrence and function in biological systems. Physiol. Rev. 49: 163–239

    Google Scholar 

  • National Academy of Sciences (1980) Drinking Water and Health. Safe Drinking Water Committee, Vol 3 (pp 364–369). National Academy Press, Washington, D.C.

    Google Scholar 

  • National Research Council (1976) Effects of Chromium in the Canadian Environment. Associate Committee on Scientific Criteria for Environment, NRCC No. 15017, Ottawa

    Google Scholar 

  • Nies A, Nies DH & Silver S (1989) Cloning and expression of plasmid genes encoding resistance to chromate and cobalt inAlcaligenes eutrophus. J. Bacteriol. 171: 5065–5070

    Google Scholar 

  • Nies A, Nies DH & Silver S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant fromAlcaligenes eutrophus. J. Biol. Chem. 265: 5648–5653

    Google Scholar 

  • Nies DH & Silver S (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt inAlcaligenes eutrophus. J. Bacteriol. 171: 896–900

    Google Scholar 

  • Nishioka H (1975) Mutagenic activities of metal compounds in bacteria. Mutation Res 31: 185–189

    Google Scholar 

  • Norris PR & Kelly DP (1979) Accumulation of metals by bacteria and yeasts. Dev. Ind. Microbiol. 20: 299–308

    Google Scholar 

  • Offenbacher EG & Pi-Sunyer FX (1988) Chromium in human nutrition. Ann. Rev. Nutr. 8: 543–563

    Google Scholar 

  • Ohtake H, Cervantes C & Silver S (1987) Decreased chromate uptake inPseudomonas fluorescens carrying a chromate resistance plasmid. J. Bacteriol. 169: 3853–3856

    Google Scholar 

  • Ohtake H, Komori K, Cervantes C & Toda K (1990) Chromate resistance in chromate-reducing strain ofEnterobacter cloacae. FEMS Microbiol. Lett. 67: 85–88

    Google Scholar 

  • Petrilli FL & deFlora S (1977) Toxicity and mutagenicity of hexavalent chromium inSalmonella typhimurium. Appl. Environ. Microbiol. 33: 805–809

    Google Scholar 

  • Romanenko VI & Korenkov VW (1977) A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya 46: 414–417

    Google Scholar 

  • Ross DS, Sjogren RE & Bartlett RJ (1981) Behavior of chromium in soils. J. Environ. Qual. 10: 145–148

    Google Scholar 

  • Schroeder HA (1968) The role of chromium in mammalian nutrition. Am. J. Clin. Nutr. 21: 230–244

    Google Scholar 

  • Schroeder DC & Lee GF (1975) Potential transformations of chromium in natural waters. Water Air Soil Pollut. 4: 355–365

    Google Scholar 

  • Silver S & Misra TK (1988) Plasmid-mediated heavy metal resistances. Ann. Rev. Microbiol. 42: 717–743

    Google Scholar 

  • Stern RM (1982) Chromium compounds: Production and occupational exposure. In: Langard S (Ed) Biological and Environmental Aspects of Chromium (pp 5–47). Elsevier, Amsterdam

    Google Scholar 

  • Strandberg GW, ShumateII SE & ParrottJr JR (1981) Microbial cells as biosorbents for heavy metals: Accumulation of uranium bySaccharomyces cerevisiae andPseudomonas aeruginosa. Appl. Environ. Microbiol. 41: 237–245

    Google Scholar 

  • Summers AO & Jacoby GA (1978) Plasmid-determined resistance to boron and chromium compounds inPseudomonas aeruginosa. Antimicrob. Agents Chemother. 13: 637–640

    Google Scholar 

  • Summers AO, Jacoby GA, Swartz MN, McHugh G & Sutton L (1978) Metal cation and oxyanion resistances in plasmids of gram negative bacteria. In: Schlessinger D (Ed) Microbiology (pp 128–131). American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Underwood EJ (1971) Chromium. In: Underwood EJ (Ed) Trace Elements in Human and Animal Nutrition (pp 253–266). Academic Press, New York

    Google Scholar 

  • Venitt S & Levy LS (1974) Mutagenicity of chromate in bacteria and its relevance to chromate carcinogenesis. Nature 250: 493–495

    Google Scholar 

  • Wang PC, Mori T, Komori K, Sasatsu M, Toda K & Ohtake H (1989) Isolation and characterization of anEnterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol. 55: 1665–1669

    Google Scholar 

  • Wang PC, Mori T, Toda K & Ohtake H (1990) Membrane-associated chromate reductase activity fromEnterobacter cloacae. J. Bacteriol. 172: 1670–1672

    Google Scholar 

  • Williams JW & Silver S (1984) Bacterial resistance and detoxification of heavy metals. Enzyme Microb. Technol. 6: 530–536

    Google Scholar 

  • Wong PTS & Trevors JT (1988) Chromium toxicity to algae and bacteria. In: Nriagu JO & Nieboer E (Eds) Chromium in the Natural and Human Environments (pp 305–315). Wiley, New York

    Google Scholar 

  • Zajic JE & Chiu YS (1972) Recovery of heavy metals by microbes. Dev. Ind. Microbiol. 13: 91–100

    Google Scholar 

  • Zibilske LM & Wagner GH (1982) Bacterial growth and fungal genera distribution in soil amended with sewage sludge containing cadmium, chromium and copper. Soil. Sci. 134: 364–370

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervantes, C. Bacterial interactions with chromate. Antonie van Leeuwenhoek 59, 229–233 (1991). https://doi.org/10.1007/BF00583675

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00583675

Key words

Navigation