Skip to main content
Log in

The influence of unusual counterions on the electrochemistry and physical properties of polypyrrole

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of different counterions have been incorporated into polypyrrole electrochemically. These include toluenesulphonate (TS), pyrenesulphonate (PSA), Pyrene-1,3,6,8-tetrasulphonate (PTSA), dodecylbenzenesulphonate (DBS), 1,2-bis (decyloxycarbonyl)ethane-1-sulphonate (DOCES), octachloro-dirhenate (Re2Cl8) and tetraphenylborate (TPB). Electrochemical redox behaviour of the pyrrole monomer and the polypyrrole incorporating these different anions was investigated and is discussed. From scanning electron microscopy (SEM), it is shown that the different counterions incorporated strongly affect the morphology of the polymer films, they vary from fully dense to open structures. Chemical and physical characterization of the materials is presented and suggests that the sizes of the different counterions incorporated also influence the polymer chain structures, packings and their thermal stabilities. The pyrrole to counterion stoichiometries are very different, ranging from 1 to 13. In most cases, the redox potential of the polymer can be related to the size of the counterion but the electrical conductivity, which ranges from 2×10−3 to 50 Scm−1, is not simply related to the counterion but is dependent on both chain structure and bulk morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kaneto, M. Maxfield, D. P. Nairns, A. G. MacDiarmid, andA. J. Heeger,J. Chem. Soc., Faraday Trans. 78 (1982) 3417.

    Google Scholar 

  2. M. Josowicz andJ. Janata Anal. Chem. 58 (1986) 514.

    Google Scholar 

  3. P. Burgmayer andR. W. Murray,J. Electroanal Chem. 147 (1983) 339.

    Google Scholar 

  4. H. Yoneyama, K. Wakamoto andH. J. Tamura,Electrochem. Soc. 132 (1985) 241K.

    Google Scholar 

  5. J. W. Thackeray, H. S. White andM. S. Wrighton J. Phys. Chem. 89 (1985) 5133.

    Google Scholar 

  6. C. K. Chiang, C. R. Fincher Jnr, Y. W. Tark, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, andA. G. MacDiarmid,Phys. Rev. lett. 39 (1977) 1098.

    Article  Google Scholar 

  7. A. F. Diaz, andK. K. Kanazawa,J. Chem. Soc., Chem. Commun. (1979) 635.

  8. M. Satoh, K. Kaneto andK. Yoshima,Syn. Met.,14 (1986) 289.

    Google Scholar 

  9. M. Ogasawara, K. Funahashi, T. Demura, T. Hagiwara, andK. Iwata,ibid. 14 (1986) 61.

    Google Scholar 

  10. G. K. Chandler, andD. Pletcher,Chem. Soc. Spec. Period. Rep. Electrochem. 10 (1985) 117.

    Google Scholar 

  11. K. M. Cheung, D. Bloor, andG. C. Stevens,Polymer 29 (1988) 1709.

    Google Scholar 

  12. J. P. I. Lundstrom, andT. Skotheim,J. Electrochem. Soc. 129 (1982) 1685.

    Google Scholar 

  13. J. Ruhe, T. A. Ezquerra andG. Wegner,Syn. Met.,28 (1989) C177.

    Google Scholar 

  14. C. E. Loader, andH. J. Anderson,Tetrahedron,25 (1969) 3879.

    Google Scholar 

  15. J. K. Groves, N. E. Cundasaurny, andH. J. Anderson,Can. J. Chem. 51 (1973) 1089.

    Google Scholar 

  16. R. M. Acheson, andJ. M. Vernon J. Chem. Soc. (1961) 457.

  17. M. K. A. Khan, K. J. Morgan andD. P. Morrey,Tetrahedron 22 (1966) 2095.

    Google Scholar 

  18. M. R. Bryce, A. Chissel, P. Kathirgamanathan, D. Parker andR. M. N. Smith,J. Chem. Soc., Chem. Commun. (1987) 466.

  19. D. O. Cheng, T. L. Bowman andE. Legoff,J. Heterocyclic Chem. 13 (1976) 1145.

    Google Scholar 

  20. J. Ruhe, T. A. Ezquerra, M. Mohammadi, V. Eukelmann, F. Kremer, andG. Wegner,Syn. Met. 28 (1989) C217.

    Google Scholar 

  21. J. Ruhe, C. Krohnke, T. A. Ezquerra, F. Kremer andG. Wegner,Ber. Bunsenges, Phys. Chem. 91(9) (1987) 885.

    Google Scholar 

  22. A. Mohammadi, M. A. Hasan, B. Liedberg, I. Lundstrom andW. R. Salaneck,Syn. Met. 14 (1986) 189.

    Google Scholar 

  23. A. Mohammadi, I. Lundstrom, W. R. Salaneck andO. Inganas,Chemtronics 1 (1986) 171.

    Google Scholar 

  24. X. Q. Yang, T. Inagaki, T. A. Skotheim, Y. Okamoto, L. Samuelson, G. Blackburn andS. Tripathy,Mol. Cryst. Liq. Cryst. 160 (1988) 253.

    Google Scholar 

  25. A. K. M. Rahman, L. Samuelson, D. Minehan, S. Clough andS. Tripathy,Syn. Met. 28 (1989) C237.

    Google Scholar 

  26. X. Q. Yang, J. Chem, P. D. Hale, T. Inagaki andT. A. Skotheim,ibid. 28 (1989) C251.

    Google Scholar 

  27. K. Hong andM. F. Rubner Thin Solid Films 160 (1988) 187.

    Google Scholar 

  28. K. G. Neoh, T. C. Tan andE. T. Kang,Polymer 29 (1988) 553.

    Google Scholar 

  29. T. H. Chao, andJ. March J. Polym. Sci., Part A 26 (1988) 743.

    Google Scholar 

  30. S. Rapi, V. Bocchi, andG. P. Gardini,Syn. Met. 24 (1988) 217.

    Google Scholar 

  31. L. F. Warren andD. P. Anderson,J. Electrochem. Soc. 134 (1987) 101.

    Google Scholar 

  32. G. Bidan, E. M. Genies, andM. Lapkowski,J. Electroanal. Chem. 251 (1988) 297.

    Google Scholar 

  33. G. Bidan andM. Lapkowski,Syn. Met. 28 (1989) C113.

    Google Scholar 

  34. S. Takeo, O. Akira, A. Masaji andH. Kenichi,J. Chem. Soc. Faraday Trans. I 84(11) (1988) 3941.

    Google Scholar 

  35. D. T. Glatzhofes, J. Ulanski andG. Wegner,Polymer 28 (1987) 449.

    Google Scholar 

  36. A. F. Diaz andJ. C. Lacroix,New J. Chem. 12 (1988) 171.

    Google Scholar 

  37. S. C. Larry, C. K. Glenn, andJ. P. William,J. Phys. Chem. 92 (1988) 12.

    Google Scholar 

  38. F. M. Menger, andL. G. Whitesell,J. Org. Chem. 52 (1987) 3793.

    Google Scholar 

  39. K. Toyoki andO. Yoshio,Bull. Chem. Soc. Jpn. 51(6) (1978) 1877.

    Google Scholar 

  40. M. G. Kanatzidis, M. Hubbard, L. M. Tonge andT. J. Marks,Syn. Met. 28 (1989) C89.

    Google Scholar 

  41. M. G. Kanatzidis, M. Hubbard, L. M. Tonge andT. J. Marks,J. Amer. Chem. Soc. 109 (1987) 3797.

    Google Scholar 

  42. L. Meities andP. Zuman, “Handbook series in Ong. Electrochemistry”, Vol. 1, (CRC Press, Inc. 1976) p. 506.

  43. J. Forrent J. Chem. Soc. (1960) 574.

  44. S. Aeiyach andP. C. Lacaze J. Polym. Sci. Part A 27 (1989) 515.

    Google Scholar 

  45. S. Asavapiriyanout, G. K. Chandler, G. A. Gunawasdena andD. Pletcher,J. Electroanal. Chem. 177 (1984) 229.

    Google Scholar 

  46. E. Steckhan, “Topics in current chemistry 142 — Electrochemistry I”, (Springer Verlag, 1987), Ch. 1.

  47. T. Shono, A. Ikeda, J. Hayashi andS. Hakozaki,J. Amer. Chem. Soc. 97(15) (1975) 4261.

    Google Scholar 

  48. J. L. Bredas, J. C. Scott, K. Yakushi andG. B. Street,Phys. Rev. B30 (1984) 1023.

    Google Scholar 

  49. W. Ford, C. B. Duke andW. R. Salaneck,J. Chem. Phys. 77 (1982) 5030.

    Google Scholar 

  50. J. L. Bredas andG. B. Street,Acc. Chem. Res. 18 (1985) 309.

    Google Scholar 

  51. F. R. Dollish, W. G. Fateley andF. F. Bentley, “Characteristic Raman Frequencies of Organic Compounds”, (Wiley, New York, 1974) Ch. 16, p. 217.

    Google Scholar 

  52. Y. Fujii, Y. Furukawa, H. Takenchi, andI. Harada, “Proc. IXth Int. Conf. on Raman Spectroscopy, Tokyo” (IUPAC, 1984) p. 412.

  53. Y. Furukawa, S. Tazawa, Y. Fujii andI. Harada,Syn. Met. 24 (1988) 329.

    Google Scholar 

  54. J. H. C. Robin andJ. S. Martin,Inorg. Chem. 22 (1983) 1214.

    Google Scholar 

  55. H. H. Wieder, “Laboratory Notes on Electrical and Galvanomagnetic Measurements, Materials Science Monographs”, Vol. 2 (Elsevier, Amsterdam, 1979) Ch. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, K.M., Bloor, D. & Stevens, G.C. The influence of unusual counterions on the electrochemistry and physical properties of polypyrrole. J Mater Sci 25, 3814–3837 (1990). https://doi.org/10.1007/BF00582447

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00582447

Keywords

Navigation