Skip to main content
Log in

DNA length variants contiguous to the 3′ end of a vitellogenin gene inDrosophila grimshawi laboratory stocks from different Hawaiian Islands

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Two V3 vitellogenin clones isolated from genomic libraries ofDrosophila grimshawi (G1, Auwahi, Maui) were found to differ in length. Structural comparison of the two clones established that the length difference could be attributed to two insertions/deletions of about 200 bp each, both within the 3′ flanking sequences of the gene. The two length variants appeared to be polymorphic in the G1 laboratory strain, as demonstrated by analysis of genomic DNA isolated from single flies. The deleted variant sequence was traced by further analysis to two otherD. grimshawi strains (PK9 and S10G1) which originated from the island of Molokai. The existence of this morph in the Maui strain appears to have resulted from a laboratory stock contamination at the Drosophila Stock Center. In the course of a few generations of culture of this G1 strain at New York University, the deleted morph increased its frequency surprisingly rapidly, almost replacing the original morph, while at the Bowling Green Stock Center, the original morph still predominates. These frequency changes are most likely consequences of genetic drift due to bottlenecks in the maintenance and propagation of this stock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett, T., Pachl, C., Gergen, J. P., and Wensink, P. C. (1980). The isolation and characterization ofDrosophila yolk protein genes.Cell 21729.

    Google Scholar 

  • Bell, G. I., Karam, J. H., and Rutter, W. J. (1981). Polymorphic DNA region adjacent to the 5′ end of the human insulin gene.Proc. Natl. Acad. Sci. USA 785759.

    Google Scholar 

  • Bell, G. I., Selby, M. J., and Rutter, W. J. (1982). The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences.Nature 29531.

    Google Scholar 

  • Benton, W. D., and Davis, R. W. (1977). Screening λ gt recombinant clones by hybridization to single plaquesin situ.Science 196180.

    Google Scholar 

  • Berk, A. J., and Sharp, P. A. (1977). Sizing and mapping of early adenovirus mRNAs by gel electrophoresis ofSI endonuclease-digested hybrids.Cell 12721.

    Google Scholar 

  • Bingham, P. M., Levis, R., and Rubin, G. M. (1981). Cloning of DNA sequences from the white locus ofD. melanogaster by a novel and general method.Cell 25693.

    Google Scholar 

  • Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heyneker, H. L., Boyer, H. W., Crosa, J. H., and Falkow, S. (1977). Construction and characterization of new cloning vehicles. II. A multipurpose cloning system.Gene 295.

    Google Scholar 

  • Carson, H. L., and Sato, J. E. (1969). Microevolution within three species of HawaiianDrosophila.Evolution 23493.

    Google Scholar 

  • Carson, H. L., Hardy, D. E., Spieth, H. T., and Stone, W. S. (1970). The evolutionary biology of the Hawaiian Drosophilidae. In Hecht, M. K., and Steeve, W. C. (eds.)Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky Appleton-Century-Crofts, New York, pp. 437–543.

    Google Scholar 

  • Chapman, B. S., Vincent, K. A., and Wilson, A. C. (1981). Extensive polymorphism and evolution in zeta globin genes.J. Cell. Biochem. 5 (Suppl.):400.

    Google Scholar 

  • Chapman, B. S., Vincent, K. A., and Wilson, A. C. (1986). Persistence or rapid generation of DNA length polymorphism at the zeta-globin locus of humans.Genetics 11279.

    Google Scholar 

  • Craddock, E. M., Kambysellis, M. P., and Hatzopoulos, P. (1983). Synthesis and characterization of the three vitellogenin genes ofDrosophila grimshawi. Genetics 104:s18.

    Google Scholar 

  • Dong, K. W., Craddock, E. M., and Kambysellis, M. P. (1985). Conservation in the organization of the vitellogenin genes inDrosophila species.Genetics 110:s56.

  • Dover, G. (1982). A molecular drive through evolution.BioScience 32526.

    Google Scholar 

  • Dover, G. A., and Flavell, R. B. (eds.) (1982).Genome Evolution Academic Press, London.

    Google Scholar 

  • Goldfarb, M., Shimizu, K., Perucho, M., and Wigler, M. (1982). Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells.Nature 296404.

    Google Scholar 

  • Goodburn, S. E. Y., Higgs, D. R., Clegg, J. B., and Weatherall, D. J. (1983). Molecular basis of length polymorphism in the human ξ-globin gene complex.Proc. Natl. Acad. Sci. USA 805022.

    Google Scholar 

  • Hatzopoulos, P. (1984).Isolation, Characterization and Structure Analysis of the Vitellogenin Genes from Drosophila grimshawi Ph.D. thesis, New York University, New York.

    Google Scholar 

  • Hatzopoulos, P., and Kambysellis, M. P. (1987). Isolation and structural analysis ofDrosophila grimshawi vitellogenin genes.Mol. Gen. Genet. 206475.

    Google Scholar 

  • Hatzopoulos, P., Kambysellis, M. P., and Craddock, E. M. (1983). Isolation of native vitellogenin genes from a genomic library ofDrosophila grimshawi. Genetics 104:s33.

    Google Scholar 

  • Kreitman, M. (1983). Nucleotide polymorphism at the alcohol dehydrogenase locus ofDrosophila melanogaster.Nature 304412.

    Google Scholar 

  • Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982).Molecular Cloning, a Laboratory Manual Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  • McDonnel, M. W., Simon, M. N., and Studier, F. W. (1977). Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels.J. Mol. Biol. 110119.

    Google Scholar 

  • Ohta, A. T. (1978). Ethological isolation and phylogeny in thegrimshawi species complex of HawaiianDrosophila.Evolution 32485.

    Google Scholar 

  • Piano, F., Seo, E. W., Craddock, E., and Kambysellis, M. (1988).Drosophila grimshawi, a Hawaiian endemic: Island populations or incipient species?Genome 3033.

    Google Scholar 

  • Postlethwait, J. H., and Jowett, T. (1980). Genetic analysis of the hormonally regulated yolk polypeptide genes inD. melanogaster.Cell. 20455.

    Google Scholar 

  • Rose, M. R., and Doolittle, W. F. (1983). Molecular biological mechanisms of speciation.Science 220157.

    Google Scholar 

  • Seo, E., Craddock, E. M., Ohta, A. T., and Kambysellis, M. P. (1985). Vitellogenin protein diversity among island populations ofD. grimshawi. Genetics 110:s76.

    Google Scholar 

  • Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol. 98503.

    Google Scholar 

  • Steiner, W. W. M., Johnson, W. E., and Carson, H. L. (1973). Molecular differentiation inD. grimshawi.Dros. Inf. Serv. 50100.

    Google Scholar 

  • Wheeler, M. P., and Clayton, F. E. (1965). A newDrosophila culture technique.Dros. Inf. Serv. 4098.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by NIH Grant AG01870 and NSF Grant PCM-7913074 to M. P. K. and E. M. C. and an NYU Research Challenge Fund Award to M. P. K.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatzopoulos, P., Craddock, E.M. & Kambysellis, M.P. DNA length variants contiguous to the 3′ end of a vitellogenin gene inDrosophila grimshawi laboratory stocks from different Hawaiian Islands. Biochem Genet 27, 367–377 (1989). https://doi.org/10.1007/BF00554171

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00554171

Key words

Navigation