Skip to main content
Log in

Stress-strain behaviour at finite strains for various strain paths in polyethylene

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to provide new experimental facts required for constructing a non-linear constitutive equation for crystalline polymers, some tests were conducted by the use of polyethylene (PE) under various strain histories such as tension, torsion, tension-torsion proportional strain path, tension-torsion cruciform strain path, tension-torsion circular strain path, and various cyclic loadings. It is shown that (i) since the stress-strain behaviour for PE is not very sensitive to hydrostatic pressure, the equivalent stress and strain of von Mises type are useful for its description; (ii) the stress range at a constant strain amplitude at partly reversed cyclic loading tends to increase with an increase in the number of cycles, but the stress amplitude at fully reversed cyclic loading is nearly independent of the number of cycles; (iii) the degree of cyclic softening or hardening is relatively small compared with that of polypropylene; and (iv) under the conditions tested here, the effect of strain history on the stress-strain response is hardly observed for PE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Ward,J. Mater. Sci. 6 (1971) 1397.

    Article  CAS  Google Scholar 

  2. R. M. Christensen, “Theory of Viscoelasticity”, (Academic, New York, 1971).

    Google Scholar 

  3. C. Bauwens-Crowet, J. C. Bauwens andG. Homes,J. Mater. Sci. 7 (1972) 176.

    Article  CAS  Google Scholar 

  4. P. B. Bowden andJ. A. Jukes,ibid. 7 (1972) 52.

    Article  CAS  Google Scholar 

  5. N. Brown andI. M. Ward,Phil. Mag. 18 (1968) 483.

    CAS  Google Scholar 

  6. D. Rabinowitz, I. M. Ward andJ. S. C. Parry,J. Mater. Sci. 5 (1970) 129.

    Article  Google Scholar 

  7. C. Bauwens-Crowet, J. C. Bauwens andG. Homes,ibid. 8 (1973) 176.

    Article  Google Scholar 

  8. R. E. Robertson,J. Chem. Phys. 44 (1966) 3950.

    Article  Google Scholar 

  9. A. S. Argon,Phil. Mag. 28 (1973) 839.

    CAS  Google Scholar 

  10. P. B. Bowden andS. Raha,ibid. 29 (1974) 149.

    CAS  Google Scholar 

  11. D. M. Parks andM. C. Boyce, in “Constitutive Modeling for Nontraditional Materials”, edited by V. Stokes and D. Krajcinovic, ASME, AMD, New York, Vol. 85 (1987) p. 1.

    Google Scholar 

  12. T. A. Vest, J. Amoedo andD. Lee,ibid.in “ p. 71.

    Google Scholar 

  13. M. Kitagawa andT. Matsutani,J. Mater. Sci. 23 (1988) 4085.

    Article  CAS  Google Scholar 

  14. M. Kitagawa, T. Mori andT. Matsutani,J. Polym. Sci. B 27 (1989) 85.

    Article  CAS  Google Scholar 

  15. M. Kitagawa andH. Takagi,J. Mater. Sci. 25 (1990) 2869.

    Article  CAS  Google Scholar 

  16. M. Kitagawa andT. Matsutani,J. Soc. Mater. Sci. Jpn 37 (1988) 29.

    Google Scholar 

  17. E. Krempl,Trans. ASME, J. Appl. Mech. 18 (1979) 380.

    Google Scholar 

  18. M. C. Liu andE. Krempl,J. Mech. Phys. Solids 27 (1979) 377.

    Article  Google Scholar 

  19. M. Kitagawa andT. Yoneyama,J. Polymer Sci. C 26 (1988) 207.

    CAS  Google Scholar 

  20. M. Kitagawa, T. Yoneyama, J. Qui andK. Nishida,Jpn. Soc. Mech. Eng. A-57 (1991) 1680.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitagawa, M., Onoda, T. & Mizutani, K. Stress-strain behaviour at finite strains for various strain paths in polyethylene. J Mater Sci 27, 13–23 (1992). https://doi.org/10.1007/BF02403638

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02403638

Keywords

Navigation