Skip to main content
Log in

Identification of structural processes in deformation of oriented polyethylene

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The investigation is concerned with the relation between changes in the submicroscopic structure, as revealed by low angle X-ray scattering in combination with the usual wide angle X-ray diffraction, and changes in the macroscopic sample dimensions during the deformation of oriented low density polyethylene. The samples examined are mainly drawn and rolled sheets possessing a double crystal texture, with a limited additional study on a drawn sample with fibre symmetry and on recently discovered single texture specimens. The deformations include tension and compression along selected sample directions applied mostly at room temperature, but also at various elevated temperatures. The salient feature of most of these experiments is the identity of the macroscopic strain and the changes in the submicroscopic periodicity along the direction in which the sample has been initially oriented. Even when this identity is not obeyed, as for deformation at the highest temperatures, a proportionality between the quantities concerned is always maintained.

It is demonstrated how the changes in the structural periodicity can be subdivided into a rotation of unaltered crystallites, interpreted as interlamellar slip, into a change in chain inclination within the crystallites, interpreted as intralamellar slip, and into a change in the separation of the crystallites which includes the extension or compression of interlamellar amorphous material. It is shown that the relative contributions of each of these three effects is a function of the temperature of the deformation, the sample type and the type of stress applied. The results are evaluated and discussed in terms of existing conceptions of an oriented polymer and are related to earlier findings on this subject. It is pointed out in particular that the samples in question represent a very simple mechanical system: a series coupling of the individual structural processes involved suffices to describe the response of the sample to externally imposed stress.

The identity relation between changes in structure and macroscopic sample dimensions is also revealed by swelling experiments. This, in addition to equating changes in lamellar separation with changes in sample dimension, also provides some definitive information on the location of the swelling agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. L. Hay, T. Kawai, and A. Keller, J. Polymer Sci. C 16 (1967) 2721.

    Google Scholar 

  2. T. Seto and Y. Tajima, Japanese J. Appl. Phys. 5 (1966) 534.

    Google Scholar 

  3. T. Seto, T. Hara, and K. Tanaka, Japanese J. Appl. Phys. 7 (1968) 31.

    Google Scholar 

  4. I. L. Hay and A. Keller, J. Mater. Sci. 1 (1966) 41.

    Google Scholar 

  5. I. L. Hay and A. Keller, J. Mater. Sci. 2 (1967) 538.

    Google Scholar 

  6. A. Cowking, J. G. Rider, I. L. Hay, and A. Keller, J. Mater. Sci. 3 (1968) 646.

    Google Scholar 

  7. J. J. Point, G. A. Homés, D. Gezovich, and A. Keller, J. Mater. Sci. 4 (1969) 908.

    Google Scholar 

  8. A. Cowking and J. G. Rider, J. Mater. Sci. 4 (1969) 1051.

    Google Scholar 

  9. V. B. Gupta and I. M. Ward, J. Macromol. Sci. B 2 (1968) 89.

    Google Scholar 

  10. Z. H. Stachurski and I. M. Ward, J. Polymer Sci. A2 6 (1968) 1817.

    Google Scholar 

  11. C. W. Bunn, Trans. Faraday Soc. 35 (1939) 482.

    Google Scholar 

  12. A. Keller, Ber. Bunsen Ges. Phys. Chem. 74 (1970) 812.

    Google Scholar 

  13. D. R. Beresford and H. Bevan, Polymer 5 (1964) 247.

    Google Scholar 

  14. A. I. Slutsker, T. P. Sanphirova, A. A. Yastrebinskii, and V. C. Kuksenko, J. Polymer Sci. C 16 (1967) 4093.

    Google Scholar 

  15. K. Ishikawa, K. Miyasaka, K. Maeda, and M. J. Yamada, J. Polymer Sci. A2 7 (1969) 1259.

    Google Scholar 

  16. J. J. Point, M. Dosière, and A. Goffin, Lecture delivered at International Conference on Low Angle X-ray Scattering, Graz, 1970, and private communication.

  17. M. J. Hill and A. Keller, J. Macromol. Sci. B 3 (1969) 153.

    Google Scholar 

  18. M. J. Hill and A. Keller, J. Macromol. Sci. B, in the press.

  19. J. J. Point, Mem. Publ. Soc. Sci. Hainaut 71 (1958) 65.

    Google Scholar 

  20. E. S. Clark, Lecture presented at Gordon Conference on Polymers, New London 1970, and private communication.

  21. R. G. Quynn, H. Brody, S. E. Sobering, I. K. Park, R. L. Foley, H. D. Noether, W. Whitney, R. Pritchard, M. A. Sieminski, J. D. Hutchison, H. L. Wagner, K. Sakaoku, R. Corneliussen, J. Macromol. Sci. B 4 (1970) 953.

    Google Scholar 

  22. R. G. Quynn, Lecture presented at Seventh Annual Synthetic Fibres Symposium, Williamsburg, Va. 1970, and private communication.

  23. Y. Udagawa and A. Keller, J. Polymer Sci. A2, in the press.

  24. A. Keller, Reports Progr. Phys. Part 2 31 (1968) 623.

    Google Scholar 

  25. K. O'Leary and P. H. Geil, J. Macromol. Sci. B 1 (1967) 147.

    Google Scholar 

  26. J. V. Dawkins, P. J. Holdsworth, and A. Keller, Makromol. Chem. 118 (1968) 361.

    Google Scholar 

  27. E. W. Fischer, Kolloid Z.u.Z. Polymere 231 (1969) 458.

    Google Scholar 

  28. E. W. Fischer, R. Martin, F. G. Schmidt, and G. Stroble, I.U.P.A.C. Symposium on Macromolecular Chemistry, Toronto, 1968, Preprint A6.17.

  29. A. F. Burmester, Report T.R. No. 163, Division of Macromolecular Science, Case Western Reserve University, Cleveland, 1970.

    Google Scholar 

  30. A. Peterlin, J. Mater. Sci. 6 (1971) 490 and private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, A., Pope, D.P. Identification of structural processes in deformation of oriented polyethylene. J Mater Sci 6, 453–478 (1971). https://doi.org/10.1007/BF00550302

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550302

Keywords

Navigation