Skip to main content
Log in

Impact of small steel spheres on glass surfaces

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A high speed photographic study has been made as part of a detailed investigation of the impact of small steel spheres (∼ 800 and 1000 μm diameter) on to Pyrex and soda-lime glasses. The velocity of the spheres was varied from 20 to 300 m sec−1 and the fracturing process during the complete impact cycle was followed. Observations revealed substantial differences in the behaviour of the two glasses, particularly at higher velocities; Pyrex behaved as though indented by a sphere, whereas soda lime glass behaved as though indented with a pointed indenter. As with quasi-static pointed indentations, cracking was observed during the unloading cycle. It was also found that the angle of the Hertzian cone crack in Pyrex glass varied in a systematic manner with velocity. Rebound velocity, time of contact and extent of flattening of the steel spheres were also recorded. The relevance of these observations to impact erosion and strength degradation of brittle materials is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Andrews, Proc. Phys. Soc. Lond. 43 (1931) 18.

    Google Scholar 

  2. L. Longchambon, C.R. Acad. Sci. Paris 199 (1934) 1381.

    Google Scholar 

  3. J. P. A. Tillet, Proc. Phys. Soc. B69 (1956) 47.

    Google Scholar 

  4. F. C. Roesler, ibid B69 (1956) 981.

    Google Scholar 

  5. F. Auerbach, Ann. Phys. Chem. 43 (1891) 61.

    Google Scholar 

  6. Y. M. Tsai and H. Kolsky, J. Mech. Phys. Solids 15 (1967) 263.

    Google Scholar 

  7. G. P. Cherepanov and V. B. Sokolinsky, Eng. Fract. Mech. 4 (1972) 205.

    Google Scholar 

  8. B. R. Lawn and M. V. Swain, J. Mater. Sci. 10 (1975) 113.

    Google Scholar 

  9. M. V. Swain and J. T. Hagan, J. Phys. D. Appl. Phys. 9 (1976) 2201.

    Google Scholar 

  10. F. P. Bowden and J. E. Field, Proc. Roy. Soc. Lond. A282 (1964) 331.

    Google Scholar 

  11. J. E. Field, Phil. Trans. Roy. Soc. Lond. A260 (1966) 86.

    Google Scholar 

  12. L. A. Glenn, J. Mech. Phys. Solid 24 (1976) 93.

    Google Scholar 

  13. H. Hertz, Miscellaneous papers (MacMillan, London 1895) Ch. 5.

    Google Scholar 

  14. M. T. Huber, Ann. Physik 14 (1904) 153.

    Google Scholar 

  15. K. L. Johnson, J. J. O'Connor and A. C. Woodward, Proc. Roy. Soc. Lond. A334 (1973) 95.

    Google Scholar 

  16. B. R. Lawn and T. R. Wilshaw, J. Mater. Sci. 10 (1975) 1049.

    Google Scholar 

  17. D. M. Marsh, Proc. Roy. Soc. Lond. A282 (1964) 33.

    Google Scholar 

  18. R. Hill “Plasticity” (Oxford University Press, Oxford, 1950) p. 97.

    Google Scholar 

  19. K. E. Puttick, L. S. A. Smith, and L. E. Miller, J. Phys. D. Appl. Phys. 10 (1977) 617.

    Google Scholar 

  20. J. C. Jaeger, “Elasticity, Fracture and Flow”, 2nd Edition (Methuen, London, 1962) p. 186.

    Google Scholar 

  21. S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity” (McGraw-Hill, New York, 1970) p. 420.

    Google Scholar 

  22. S. C. Hunter, J. Mech. Phys. Solids 5 (1957) 162.

    Google Scholar 

  23. H. L. Oh and I. Finnie, ibid 15 (1967) 401.

    Google Scholar 

  24. F. C. Frank and B. R. Lawn, Proc. Roy. Soc. Lond. A299 (1967) 291.

    Google Scholar 

  25. B. R. Lawn, T. R. Wilshaw and N. E. W. Hartley, Int. J. Fract. 10 (1974) 1.

    Google Scholar 

  26. F. P. Mallinder and B. A. Proctor, Phys. and Chem. Glasses 5 (1964) 91.

    Google Scholar 

  27. M. M. Chaudhri, C. G. Knight and M. V. Swain, 12th International High-speed photography Conference, Toronto, August 1976.

  28. W. F. Adler, J. Non-cryst. Solids 19 (1975) 335.

    Google Scholar 

  29. B. R. Lawn, S. M. Wiederhorn and H. H. Johnson, J. Amer. Ceram. Soc. 59 (1976) 428.

    Google Scholar 

  30. I. Finnie and S. Vaidyanathan, Proceedings of the Conference on Fracture Mechanics of Ceramics, Edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange, Vol. 1 (Plenum Press, New York, 1974) p. 231.

    Google Scholar 

  31. A. G. Evans, J. Amer. Ceram. Soc. 56 (1973) 405.

    Google Scholar 

  32. I. M. Hutchings and R. E. Winter, J. Phys. E. 8 (1975) 84.

    Google Scholar 

  33. C. J. Studman and J. E. Field, J. Phys. D. Applied Phys. 9 (1976) 857.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knight, C.G., Swain, M.V. & Chaudhri, M.M. Impact of small steel spheres on glass surfaces. J Mater Sci 12, 1573–1586 (1977). https://doi.org/10.1007/BF00542808

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00542808

Keywords

Navigation