Skip to main content
Log in

A theory of yielding of amorphous polymers at low temperature — a molecular viewpoint

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nearly homogenous elastic shear on a molecular level rather than localized defect motion was considered to be the primary strain mechanism prior to yielding. The greatest or ideal value of the yield point for an amorphous polymer in the absence of the thermal activation was calculated. The theory involves a picture of the molecular motions under a shear stress involving three interconnected processes: 1. Shearons or intermolecular shear, 2. Rotons or intramolecular shear, 3. Tubons or motion along the covalent bond. The shear resistance was based on the stress to overcome the van der Waal's bond using a (6–12) potential. The model assumes that all atoms move co-operatively by the above motions, up to the point of yielding. Temperature was considered only as it affects the modulus, but the theory has not been extended to include thermal activation. The predicted value of shear yield point divided by shear modulus is <0.064 to 0.092; a review of all the experimental data obtained by extrapolations to 0 K gives an average value of 0.076±0.03.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Robertson, J. Chem. Phys. 44 (1966) 3950.

    Google Scholar 

  2. I. V. Yannas and A. C. Lunn, Polym. Prepr. 16 (1975) 564.

    Google Scholar 

  3. A. S. Argon, Phil. Mag. 28 (1973) 839.

    Google Scholar 

  4. P. B. Bowden and R. Raha, ibid. 29 (1974) 149.

    Google Scholar 

  5. N. Brown, Bull. Amer. Phys. Soc. 16 (1971) 428.

    Google Scholar 

  6. S. H. Joseph, J. Poly., Sci. Phys. 16 (1978) 1071.

    Google Scholar 

  7. A. Kelly, “Strong Solids”, 2nd edn. (Clarendon Press, Oxford, 1973).

    Google Scholar 

  8. J. Frenkel, Z. Phys. 37 (1926) 572.

    Google Scholar 

  9. S. S. Brenner, J. App. Phys. 27 (1956) 1484.

    Google Scholar 

  10. A. S. Argon, “Glass Science and Technology” Vol. 5 (Academic Press, New York, 1980) Chap. 3.

    Google Scholar 

  11. J. K. Mackenzie, PhD thesis, University of Bristol (1949).

  12. W. R. Tyson, Phil. Mag. 14 (1966) 925.

    Google Scholar 

  13. J. D. Bernal, Proc. Roy. Soc. (London) A280 (1964) 299.

    Google Scholar 

  14. H. H. Kausch and J. Becht, “Deformation and Fracture of High Polymers”, edited by H. H. Kausch, J. A. Hassel and R. J. Jaffee (Plenum Press, New-York, London, 1973) p. 317.

    Google Scholar 

  15. P. B. Bowden and J. A. Jukes, J. Mater. Sci. 7 (1972) 52.

    Google Scholar 

  16. P. B. Bowden and S. Raha, Phil. Mag. 22 (1970) 463.

    Google Scholar 

  17. J. P. Cavrot, J. Haussy, J. M. Lefebvre and B. Escaig, Mater. Sci. Eng. 36 (1978) 95.

    Google Scholar 

  18. C. Bauwens-Crowet, J. Mater. Sci. 8 (1973) 968.

    Google Scholar 

  19. J. Haussy, J. P. Cavrot, B. Escaig and J. M. Lefebvre, J. Poly. Sci. 18 (1980) 311.

    Google Scholar 

  20. P. Beardmore, Phil. Mag. 19 (1969) 389.

    Google Scholar 

  21. W. Wu and A. P. L. Turner, J. Poly. Sci-Phys. Ed. 13 (1975) 19.

    Google Scholar 

  22. J. R. Kastelic and E. Baer, J. Macromol. Sci-Phys. B7(4) (1973) 679.

    Google Scholar 

  23. C. Bauwens-Crowet, J. C. Bauwens and G. Holmes, J. Mater. Sci. 7 (1972) 176.

    Google Scholar 

  24. Y. Imai and N. Brown, Polymer 18 (1977) 298.

    Google Scholar 

  25. E. Kamei and N. Brown, Research in Progress, University of Pennsylvania (1982).

  26. H. G. Olf and A. Peterlin, J. Poly, Sci. Phys. Ed. 12 (1974) 2209.

    Google Scholar 

  27. J. F. Rudd and E. F. Gurnee, J. Appl. Phys. 28 (1957) 1096.

    Google Scholar 

  28. R. J. Angelo, R. M. Ikeda and M. L. Wallach, Polymer 6 (1965) 141.

    Google Scholar 

  29. R. Buchdahl, Rev. Sci. Inst. 41 (1970) 1342.

    Google Scholar 

  30. W. G. Gall and N. G. McCrum, J. Polym. Sci. 50 (1961) 489.

    Google Scholar 

  31. A. F. Yee and M. T. Takemori, J. Poly. Sci-Phys. Ed. 20 (1982) 205.

    Google Scholar 

  32. K. H. Illers and H. Brever, Kolloid Z. 176 (1961) 110.

    Google Scholar 

  33. A. F. Yee and S. A. Smith, Macromolecules 14 (1981) 54.

    Google Scholar 

  34. K. H. Illers and H. Breuer, J. Colloid Sci. 18 (1963) 1.

    Google Scholar 

  35. N. G. McCrum, J. Polym. Sci. 60 (1962) 53.

    Google Scholar 

  36. K. H. Illers, Koltoid-Z Z. Polym. 231 (1969) 622.

    Google Scholar 

  37. H. A. Flocke, ibid. 180 (1962) 188.

    Google Scholar 

  38. E. Passaglia and G. M. Martin, J. Res. Nat. Bur. Stand. 68 (1964) 519.

    Google Scholar 

  39. I. G. Gilmour, A. Trainor and R. N. Haward, J. Poly, Sci-Phys. 12 (1974) 1939.

    Google Scholar 

  40. N. G. McCrum, B. E. Read and G. Williams, “Anelastic and Dielectric Effects in Polymeric Solids” (John Wiley and Sons, London, New York, 1967).

    Google Scholar 

  41. L. E. Nielsen, Trans. Soc. Rheol. 9 (1965) 243.

    Google Scholar 

  42. R. W. Warfield, J. Cuevas and F. R. Barnet, J. Appl. Polym. Sci. 12 (1968) 1147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, N. A theory of yielding of amorphous polymers at low temperature — a molecular viewpoint. J Mater Sci 18, 2241–2254 (1983). https://doi.org/10.1007/BF00541826

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541826

Keywords

Navigation