Skip to main content
Log in

Decomposition and microbial dynamics for standing, naturally positioned leaves of the salt-marsh grass Spartina alterniflora

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Decomposition of leaves of smooth cordgrass (Spartina alterniflora Loisel.) was monitored for two cohorts of leaves from September 1984 to May 1985 (autumn and winterspring) at Sapelo Island (31°23′ N; 81°17′ W). The leaves were tagged in plance at the ligule, rather than cut and placed in litterbags. Dead leaves were not abscised from shoots. Loss of organic mass from the attached leaves was at least 60 to 68% of the orginal values. Fungal mass, as measured by an enzyme-linked immunosorbent assay, formed > 98% of the microbial standing crops in two of three autumn samples, and in all samples for the colder, drier, winterspring cohort. Fungal mass was probably mostly in the form of the mycelium and pseudothecia of an ascomycete, Phaeosphaeria typharum (Desm.) Holm. Fungal dominance of microbial standing crops declined when autumn leaves bent downward and acquired a large sediment content (ash=35% of dry matter); the bacterial crop then rose to 7% of the total microbial crop. Microphotoautotrophic mass was always measurable, but was never more than 2% of the microbial crop. Carbon-dioxide fixation was much lower than carbon-dioxide release, and a substantial portion of the fixation may have been anaplerotic fungal fixation. Threeto 8 wk net fungal productivity (average per day) was much greater (16 to 26 times) than measured instantaneous bacterial productivity (extrapolated to per-day values) early in each decay period. Fungal productivity was negative late in the decay period. Fungal productivity was negative late in the decay period for autumn leaves, and was approximately equal to bacterial productivity late for winter-spring leaves. Net nitrogen immobilization was observed only late in the decay period for autumn leaves, implying that nearly all dead-leaf nitrogen was scavenged into fungal mass after the first sampling interval. Flux estimates for dead-leaf carbon indicated a flow of 11–15% of the original to fungal mass, 2% to bacterial mass, 15–21% to carbon dioxide, 10–12% to dissolved leachage, and 34–36% to small particles; 32–39% remained attached as shreds at the end of the study periods. Salt-marsh periwinkles (Littorina irrorata Say) appeared to be the major shredders of dead leaves and conveyors of leaf-particulate material to the marsh sediment, at least in those parts of the marsh where the snails are densely concentrated (usually areas of short- and intermediateheight cordgrass shoots).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Alexander, S. K. (1979). Diet of the periwinkle Littorina irrorata in a Louisiana salt marsh. Gulf Res. Rep. 6: 293–295

    Google Scholar 

  • Anderson, C. E. (1974). A review of structure in several North Carolina salt marsh plants. In: Reimold, R. J., Queen, W. H. (eds.) Ecology of halophytes. Academic Press, New York, p. 307–344

    Google Scholar 

  • Bååth, E., Söderström, B. (1980). comparisons of the agar-film and membrane-filter methods for the estimation of hyphal lengths in soil, with particular reference to the effect of magnification. Soil Biol. Biochem. 12: 385–387

    Google Scholar 

  • Benner, R., Newell, S. Y., Maccubbin, A. E., Hodson, R. E. (1984). Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments. Appl. envirl Microbiol. 48: 36–40

    Google Scholar 

  • Cammen, L. M., Seneca, E. D., Stroud, L. M. (1980). Energy flow through the fiddler crabs Uca pugnax and Uca minax and the marsh periwinkle Littorina irrorata in a North Carolina salt marsh. Am. Midl. Nat. 103: 238–250

    Google Scholar 

  • Carpenter, E. J., Van Raalte, C. D., Valiela, I. (1978). Nitrogen fixation by algae in a Massachusetts salt marsh. Limnol. Oceanogr. 23: 318–327

    Google Scholar 

  • Chalmers, A. G., Wiegert, R. G., Wolf, P. L. (1985). Carbon balance in a salt marsh: interactions of diffusive export, tidal deposition and rainfall-caused erosion. Estuar., cstl Shelf Sci. 21: 757–771

    Google Scholar 

  • Chang, S.-T., Hon, D. N.-S., Feist, W. C. (1982). Photodegradation and photoprotection of wood surfaces. Wood Fiber 14: 104–117

    Google Scholar 

  • Christian, R. R. (1984). A life-table approach to decomposition studies. Ecology 65: 1693–1697

    Google Scholar 

  • Dame, R. F. (1982). The flux of floating macrodetritus in the North Inlet estuarine ecosystem. Estuar., cstl Shelf Sci. 15: 337–344

    Google Scholar 

  • Darley, W. M., Dunn, E. L., Holmes, K. S., Larew, H. G. (1976). A 14C method for measuring epibenthic microalgal productivity in air. J. exp. mar. Biol. Ecol. 25: 207–217

    Google Scholar 

  • Dowding, P. (1986). Water availability, the distribution of fungi and their adaptation to the environment. In: Ayres, P. G., Boddy, L. (eds.) Water, fungi and plants. Cambridge University Press, Cambridge, p. 305–320

    Google Scholar 

  • Elmholt, S., Kjøller, A. (1987). Measurement of the length of fungal hyphae by the membrane filter technique as a method for comparing fungal occurrence in cultivated field soids. Soil Biol. Biochem. 19: 679–682

    Google Scholar 

  • Fallon, R. D., Newell, S. Y. (1986). Thymidine incorporation by the microbial community of standing-dead Spartina alterniflora. Appl. envirl Microbiol. 52: 1206–1208

    Google Scholar 

  • Fallon, R. D., Newell, S. Y. (1989). Use of ELISA for fungal biomass measurement in standing-dead Spartina alterniflora. J. microbiol. Meth. (in press)

  • Fallon, R. D., Newell, S. Y., Groene, L. C. (1985). Phylloplane algae of standing dead Spartina alterniflora. Mar. Biol 90: 121–127

    Google Scholar 

  • Gallagher, J. L., Pfeiffer, W. J. (1977). Aquatic metabolism of the communities associated with attached dead shoots of salt marsh plants. Limnol. Oceanogr. 22: 562–564

    Google Scholar 

  • Goldman, J. C., Dennett, M. R. (1986). Dark CO2 uptake by the diatom Chaetoceros simplex in response to nitrogen pulsing. Mar. Biol. 90:493–500

    Google Scholar 

  • Griffin, D. M. (1985). A comparison of the roles of bacteria and fungi. In: Leadbetter, E. R., Poindexter, J. S. (eds.) Bacteria in nature, Volume I. Bacterial activities in perspective. Plenum Press, New York, p. 221–255

    Google Scholar 

  • Hardisky, M. A. (1980). A comparison of Spartina alterniflora primary production estimated by destructive and nondestructive techniques. In: Kennedy, V. S. (ed.) Estuarine perspectives. Academic Press, New York, p. 223–234

    Google Scholar 

  • Hicks, R. E. (1983). Microbial growth during the initial decomposition of Spartina alterniflora leaves. PhD Dissertation, University of Georgia, Athens, Georgia, USA

    Google Scholar 

  • Hopkinson, C. S., Schubauer, J. P. (1984). Static and dynamic aspects of nitrogen cycling in the salt marsh graminoid Spartina alterniflora. Ecology 65:961–969

    Google Scholar 

  • Johnson, M. C., Pirone, T. P., Siegel, M. R., Varney, D. R. (1982). Detection of Epichloë typhina in tall fescue by means of enzymelinked immunosorbent assay. Phytopathology 72: 647–650

    Google Scholar 

  • Jones, R. C. (1980). Productivity of algal epiphytes in a Georgia salt marsh: effect of inundation frequency and implications for total marsh productivity. Estuaries 3: 315–317

    Google Scholar 

  • Kirchman, D., Ducklow, H. W., Mitchell, R. (1982). Estimates of microbial growth from changes in uptake rates and biomass. Appl. envirl Microbiol. 44: 1296–1307

    Google Scholar 

  • Kohlmeyer, J., Kohlmeyer, E. (1979). Marine mycology. The higher fungi. Academic Press, New York

    Google Scholar 

  • Kozlowski, T. T. (1973). Extent and significance of shedding of plant parts. In: Kozlowski, T. T. (ed.) Shedding of plant parts. Academic Press, New York, p. 1–44

    Google Scholar 

  • Lee, C., Howarth, R. W., Howes, B. L. (1980). Sterols in decomposing Spartina alterniflora and the use of ergosterol in estimating the contribution of fungi to detrital nitrogen. Limnol. Oceanogr. 25:290–303

    Google Scholar 

  • Legendre, L., Demers, S., Yentsch, C. M., Yentsch, C. S. (1983). The 14C method: patterns of dark CO2 fixation and DCMU correction to replace the dark bottle. Limnol. Oceanogr. 28: 996–1003

    Google Scholar 

  • Margalith, P. Z. (1986). Steroid microbiology. Charles C. Thomas, Springfield, Illinois, USA

    Google Scholar 

  • Martin, F., Canet, D. (1986). Biosynthesis of amino acids during [13 C] glucose utilization by the ectomycorrhizal ascomycete Cenococcum geophilum monitored by 13C nuclear magnetic resonance. Physiologie vég. 24: 209–218

    Google Scholar 

  • Miller, J. D., Young, J. C., Trenholm, J. L. (1983). Fusarium toxins in field corn. I. Time course of fungal growth and production of deoxynivalenol and other mycotoxins. Can. J. Bot. 61: 3080–3087

    Google Scholar 

  • Newell, S. Y. (1984). Bacterial and fungal productivity in the marine environment: a contrastive overview. Colloques int. Cent. natn. Rech. scient. 331: 133–139

    Google Scholar 

  • Newell, S. Y., Arsuffi, T. L., Fallon, R. D. (1988a). Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. App. envirl Microbiol. 54: 1876–1879

    Google Scholar 

  • Newell, S. Y., Fallon, R. D. (1983). Study of fungal biomass dynamics within dead leaves of cordgrass: progress and potential. In: Proceedings of the International Symposium on Aquatic Macrophytes. Catholic University, Nijmegen, The Netherlands, p. 150–160

    Google Scholar 

  • Newell, S. Y., Fallon, R. D. (1989). Litterbags, leaf tags, and decay of non-abscised intertidal leaves. Can. J. Bot. (in press)

  • Newell, S. Y., Fallon, R. D., Arsuffi, T. L. (1988b). A technique for determining fungal instantaneous growth rates in field samples. Newsl. mycol. Soc. Am. 39: p. 42

    Google Scholar 

  • Newell, S. Y., Fallon, R. D., Cal Rodriguez, R. M., Groene, L. C. (1985). Influence of rain, tidal wetting and relative humidity on release of carbon dioxide by standing-dead salt-marsh plants. Oecologia (Berl.) 68: 73–79

    Google Scholar 

  • Newell, S. Y., Fallon, R. D., Miller, J. D. (1986). Measuring fungalbiomass dynamics in standing-dead leaves of a salt-marsh vascular plant. In: Moss, S. T. (ed.) The biology of marine fungi. Cambridge University Press, Cambridge, p. 19–25

    Google Scholar 

  • Newell, S. Y., Fell, J. W., Statzell-Tallman, A., Miller, C., Cefalu, R. (1984). Carbon and nitrogen dynamics in decomposing leaves of three coastal marine vascular plants of the subtropics. Aquat. Bot. 19: 183–192

    Google Scholar 

  • Newell, S. Y., Hicks, R. E. (1982). Direct-count estimates of fungal and bacterial biovolume in dead leaves of smooth cordgrass (Spartina alterniflora Loisel.). Estuaries 5: 246–260

    Google Scholar 

  • Newell, S. Y., Miller, J. D., Fallon, R. D. (1987). Ergosterol content of salt-marsh fungi: effect of growth conditions and mycelial age. Mycologia 79: 688–695

    Google Scholar 

  • Newell, S. Y., Statzell-Tallman, A. (1982). Factors for conversion of fungal biovolume values to biomass, carbon, and nitrogen: variation with mycelial ages, growth conditions, and strains of fungi from a salt marsh. Oikos 39: 261–268

    Google Scholar 

  • Odum, E. P., Smalley, A. E. (1959). Comparison of population energy flow of a herbivorous and a deposit-feeding invertebrate in a salt marsh ecosystem. Proc. natn. Acad. Sci. U.S.A. 45: 617–622

    Google Scholar 

  • Padgett, D. E., Hackney, C. T., Sizemore, R. K. (1985). A technique for distinguishing between bacterial and non-bacterial respiration in decomposing Spartina alterniflora. Hydrobiologia 122: 113–119

    Google Scholar 

  • Paustian, K., Schnürer, J. (1987a). Fungal growth response to carbon and nitrogen limitation: a theoretical model. Soil Biol. Biochem. 19: 613–620

    Google Scholar 

  • Paustian, K., Schnürer, J. (1987b). Fungal growth response to carbon and nitrogen limitation: application of a model to laboratory and field data. Soil Biol. Biochem. 19: 621–629

    Google Scholar 

  • Pomeroy, L. R., Wiegert, R. G. (eds.) (1981). The ecology of a salt marsh. Springer-Verlag, New York

    Google Scholar 

  • Rayner, A. D. M., boddy, L., Dowson, C. G. (1987). Genetic interactions and developmental versatility during establishment of decomposer basidiomycetes in wood and tree litter. In: Fletcher, M., Gray, T. R. G., Jones, J. G. (eds.) Ecology of microbial communities. Cambridge University Press, Cambridge, p. 83–123

    Google Scholar 

  • Rublee, P., Cammen, L., Hobbie, J. (1978). Bacteria in a North Carolina salt marsh: standing crop and importance in the decomposition of Spartina alterniflora. Publs Univ. N. Carolina Sea Grant UNC-SG-78-11

  • Stiven, A. E., Kuenzler, E. J. (1979). The response of two salt marsh molluscs, Littorina irrorata and Geukensia demissa, to field manipulations of density and Spartina litter. Ecol. Monogr. 49: 151–171

    Google Scholar 

  • Sutherland, G. K., Eastwood, A. (1916). The physiological anatomy of Spartina townsendii. Ann. Bot. 30: 333–351

    Google Scholar 

  • Swift, M. J., Heal, O. W., Anderson, J. M. (1979): Decomposition in terrestrial ecosystems. University of California Press, Berkley, California, USA

    Google Scholar 

  • Twilley, R. R., Ejdung, G., Romare, P., Kemp, W. M. (1986). A comparative study of decomposition, oxygen consumption and nutrient release for selected aquatic plants occurring in an estuarine environment. Oikos 47: 190–198

    Google Scholar 

  • Valiela, I., Teal J. M., Allen, S. D., Van Etten, R., Goehringer, D., Volkmann, S. (1985). Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of aboveground organic matter. J. exp. mar. Biol. Ecol. 89: 29–54

    Google Scholar 

  • Warren, J. H. (1985). Climbing as an avoidance behavior in the salt marsh periwinkle, Littorina irrorata (Say). J. exp. mar. Biol. Ecol. 89: 11–28

    Google Scholar 

  • Wessén, B., Berg, B. (1986). Long-term decomposition of barley straw: chemical changes and ingrowth of fungal mycelium. Soil Biol. Biochem. 18: 53–59

    Google Scholar 

  • West, A. W., Grant, W. D. (1987). use of ergosterol, diaminopimelic acid and glucosamine contents of soils to monitor changes in microbial populations. Soil Biol. Biochem. 19: 607–612

    Google Scholar 

  • Whiting, G. J., Morris, J. T. (1986). Nitrogen fixation (C2H2 reduction) in a salt marsh: its relationship to temperature and an evaluation of an in situ chamber technique. Soil Biol. Biochem. 18: 515–521

    Google Scholar 

  • Wilson, J. O., Valiela, I., Swain, T. (1986). Carbohydrate dynamics during decay of litter of Spartina alterniflora. Mar. Biol. 92: 277–284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newell, S.Y., Fallon, R.D. & Miller, J.D. Decomposition and microbial dynamics for standing, naturally positioned leaves of the salt-marsh grass Spartina alterniflora . Mar. Biol. 101, 471–481 (1989). https://doi.org/10.1007/BF00541649

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541649

Keywords

Navigation