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Mult ivar ia te  Point  Processes:  
Predictable  Project ion,  R a d o n - N i k o d y m  Derivat ives ,  

Representa t ion  of  Mart inga les  

Jean Jacod* 

Introduction 

1. A point process over the half-line ]0, ~ [  is a strictly increasing sequence 
(T,),_>_l of positive random variables defined on a measurable space (fLY). 
A multivariate point process (also called marked point process) is a point process 
(T,) for which a random variable X, is associated to each T,. The variables X, 
take their values in a measurable space (E, g) (the set of "marks"). With our 
definition, we may have a finite accumulation point To~=limT ., but no point 
after T~. The reason for allowing T~ < ~ will become apparent later. 

A multivariate point process (T.,X,) is completely characterized by the 
following discrete random measure on ]0, ~ [ • E: 

/,(co; dt, dx) = ~ ~r,(~),x.~o,))(dt, dx) l{r,~,)< ~}, (.) 
n > l  

where ea denotes the Dirac measure located at point a. 

When E consists of one point, the multivariate point process reduces to a 
point process. Our formulation also includes the "jump processes", as introduced 
by Bo~l, Varaiya and Wong [2]: if (Zt) is a jump process, T, is the n-th jump and 
X.=Zr. 

2. Let (~)t>=o be an increasing and right-continuous family of sub-~-algebras 
of Y such that each T, is a stopping time and each X, is ~ r  -measurable. Let P 
be a probability measure on (O, ~-). In Theorem (2.1) we introduce our main tool: 
we prove the existence and uniqueness of a positive random measure v(a); dr, dx) 
on ]0, o0[ x E called the predictable projection of # and such that (i) for each B e g  
the process (v(]0, t] x B)),_> o is predictable (or natural: we recall the definition of 
these terms below), and (if) for each B~g  and n > 1, 

t ̂  r.] • B)- t ̂  T.] • B)),_>_o 

is a martingale. Equivalently, these two conditions mean that for each B, 
(v(]0, t ] x  B)) is the so-called "dual predictable projection" of (#(]0, t] • B)) [7]. 
One can easily see that, in addition, v({t} x E)< 1 for each t and v([T~, oo[ x E) =0. 

When the multivariate point process is only a point process, its predictable 
projection is also known as its "stochastic intensity" (Br6maud I-3, 4], Jacod 1-10]). 

3. The original aim of this research was to consider the converse of the previous 
result. Namely, let a multivariate point process to which the random measure # 
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is associated by (.), and a predictable random measure v satisfying v({t} x E)< 1 
and v([T~, ~ [  x E)=0, be defined on (f2, (~),  ~) .  Is it possible to construct one 
(and only one?) probability measure on (f2, ~ )  such that v is the predictable pro- 
jection of#? 

Clearly enough, without further assumption the answer is a negative one. 
However let the "minimal" family of o--algebras be defined by 

fft = a(#(]0, s] x B): s<=t, Bse) ,  

and let us assume the following: 

(A.1) we have o ~ t = ~  0 v fgt 1 for each t. 

In view of the above problem, we have three main results: 

a) Uniqueness. Two probability measures having the same restriction to o~ o 
and leading to the same predictable projection for # must coincide on o~.  

b) First Result of Existence. Let us assume that s is the set of all possible 
multivariate point processes, that # is the random measure associated by (.) to 
the canonical multivariate point process defined on s and that o~ t = ~t. For any 
predictable random measure v satisfying v({t}xE)<=l and v([To~,oo[xE)=O 
there exists one and only one probability measure on (f2, if| for which v is the 
predictable projection of #. The same kind of result also holds under slightly more 
general assumptions, which are explicitely stated in Theorem (3.6). 

c) Second Result of Existence. If P is a probability for which the predictable 
projection v is known, we give in Theorem (5.2) a necessary and sufficient con- 
dition for another predictable random measure v' which satisfies v '< v to be the 
predictable projection for another probability measure P' satisfying P' ~ P. 

4. In the course of proving (c) we get two results which are interesting by 
themselves. 

d) Radon-Nikodym Derivatives. Let P and P' be two probability measures with 
P'~P.  Then one can find a positive function Y on f2• [0, oo [xE  such that if v 
is the predictable projection of # for P, then v'(o); dt, dx)=v(co; tit, dx)Y(a~, t, x) 
is the predictable projection of # for P' (this holds without (A.1)). Moreover one 

gives an explicit version for the Radon-Nikodym derivative E \  dp I t] in 

terms of Y (Eq. (14) and Theorem (5.1)). These results are similar to the well- 
known results (of Girsanov's type) relative to the Wiener process. For an extensive 
discussion of possible uses of results in this direction, we refer to Kailath [ 11]. 

e) Representation of Martingales. Each martingale (or local martingale) (Z~) 
can be written as an integral 

t 

z, =z0 + .( iX(s, x)[v(ds, dx)-#(ds, dx)], 
E 0 

where X is a "predictable" process defined on f2 x [0, oo[ x E (a more rigourous 
statement is given in Theorem (5.4)). This result is similar to the known representa- 
tion of martingales as the stochastic integral of a predictable process with respect 
to a fundamental martingale, for Poisson and Wiener processes. 

x ~o v f t  is the a-algebra generated by ~o u fit. 
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5. Results c), d) and e) were already partially known, at least when # is a 
Poisson random measure under P (cf. Sections 4 and 5 for precise references), 
and e) was known for arbitrary point processes (Chou and Meyer [5]). But except 
in [5], the previous proofs were based upon the theory of stochastic integrals, 
which is rather sophisticated, and implies some unnecessary assumptions. 

On the other hand, this paper is "elementary" in the sense that it does not ask 
for a difficult theory as a prerequisite. In particular each apparently stochastic 
integral is to be interpreted as an ordinary integral for each coEO. In addition our 
proofs are often shorter and more general than the previous proofs (except once 
more [5] for e)). However the simplicity of our approach depends strongly on the 
particular structure of #, and the stochastic integrals approach probably gives 
more insight. For example we refer to Van Schuppen and Wong [21] for the 
study of similar problems in a more general setting, and to Orey [14] for a general 
review of these problems. 

1. Notations and Preliminaries 

1. Let (f2, ~ )  be a measurable space on which is defined an increasing and 
right-continuous family (~t)t >__ o of c~-algebras included in 

We make a frequent use of the books of Meyer [12] and Dellacherie [7] 
concerning predictable stopping times and processes. However these notions are 
usually defined on a probability space (f2, ~,  P), the family (~)  being complete 
with respect to P. Here we are interested in constructing P. Therefore we need a 
definition for these notions which is independent of P, and which is as follows: 

Definition. A real-valued process (Xt)t=> o is called predictable if the application 
(co, t),~Xt(co) is measurable with respect to the a-algebra ~ of O • [0, ~ [  generated 
by the applications (co, t),~ Yt(co) which are ~-measurable in co and left-continuous 
in t. 

A stopping time T is called predictable if the process X t --- l(T<t ~ is predictable. 
The following facts are well known: let P be a probability measure on (f2, ~-) 

and (~)  be the usual completion of (J~) for P. Then a process is predictable in the 
sense of [7] (one could say (~)-predictable) if and only if it is equal to a predictable 
process in the above sense, except on a P-null set. A similar statement holds for 
predictable stopping times. Using these facts, the reader can verify that each 
result of Dellacherie [7] we use in the sequel applies for the above notion of 
predictability. 

2. If (A, d )  is any measurable space, we denote by b d  (resp. d § the set of 
all real-valued d-measurable functions on A, which are bounded (resp. non- 
negative). If T is a non-negative random variable defined on f2, its graph is the set 
[T]={(co, T(co)): T(co)<oo}. By increasing process we mean a process (Bt)t>_o 
whose paths are increasing, right-continuous, and satisfy B0=0. For such-a 
process we put A B t = B t - B t _  and B~=l imt+~B r We recall that an increasing 
process is predictable if and only if it is natural in the sense of Meyer [ 12]. 

We consider a space E which is Lusin (i.e.: E is a Borel subset of a compact 
metric space), and an extra point A. We put E z = E u  {A}, /~=]0, oo[ x E, /~z= 
Eu{(oo,  A)} and O = f 2 x [ 0 ,  oo[xE.  Let g (resp. Nz, ~, Jz) denote the Borel 
a-algebra of E (resp. Ez,/~,/~z), and ~ = ~ | g. 
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In this paper, a random measure always means a positive transition measure 
q(o); dr, dx) from (Q, o~) over (E, g). 

Definition. A random measure 11 is called predictable if, for each X ~  +, the 
process (tlX)t defined by 

t 

(~x)t(~o) = S ~ x(o), s, x) ~(a); ds, dx) 
E 0 

is predictable. 

3. We suppose that a multivariate point process is given on (2. In other words 
we have a sequence (T,, X,),> 1 of random variables with values in (/~a, ~a), such 
that: 

(i) each T, is a stopping time, and T,< T,+ 1, 

(ii) each X, is fiT -measurable, 

(iii) if T,< 0% then T,< T,+ 1 . 

We put To=0, T~=limT,,  S , = T , - T , _  1 on {T,_l<oe } and S = o o  on 
{T,_ 1 = oe}. We define a random measure # by 

#(co; dr, dx) = ~ l(T,(~o ) < ~o} g(T,(co),X.(o~))( dt, dx). 
n > l  

Let f f t=a(#(]O,s]xB) :s<t ,  Beg) .  Clearly ff~=~t, and the family (ff~)t>_o is 
increasing and right-continuous (the last property depends upon the fact that the 
sequence (T,) is strictly increasing). At last we shall need the assumption (A.1) as 
written in the introduction. 

We shall also consider the counting process N~ = #(]0, t] x E). When E reduces 
to one point, that is when the multivariate point process reduces to an ordinary 
point process on ]0, ~ [, it is completely described by N = (Nt)t~ o and we need not 
consider # at all. 

2. Existence of a Predictable Projection 

In this section we assume that a probability measure P on (g2, ~ )  is given. 
The next result (existence of a predictable projection) is stated in the most con- 
venient form for our purposes. Other equivalent, and more usual, statements are 
given below. 

(2.1) Theorem. There exists one and only one (up to a modification on a P-null 
set) predictable random measure v such that for each X ~ + we have: 

E(5 X (t, x)#(dt,  dx))= E(S X (t, x)v(dt, dx)). (1) 
E E 

This result is a corollary of the following very general lemma, of independent 
interest. For each random measure q we define a positive measure M r on (O, ~)  by 

Mr(X ) = E(~_ X(t, x) tl(dt, dx)), (2) 
E 

where X ~  +. Then we have: 

(2.2) Lemma. Let tl be a random measure such that the measure M r is a-finite. 
There exists one and only one (up to a modification on a P-null set) predictable 
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random measure 11' such that for each X e ~  + we have: 

e( X (t, x) (dt, dx))= E( X (t, r (dt, dx)). (3) 
E E 

In other words, the predictable measure t/' is characterized by M~ = M,,. The 
measure t/' is called the predictable projection of q (one should say "dual pre- 
dictable projection", but no confusion can arise here). 

Proof of (2.2). a) Let us suppose that M~(t))< oo. The formula m( . )=M,( . ,  E) 
defines a positive finite measure on (f2 x [0, oo [, N) and there exists a transition 
probability B(o, t; dx) from this space over (E, C) such that 

M~,(d~o, dt, dx)=re(do, dt) B(o, t; dx) 

(the fact that E is Lusin intervenes here). 
According to Dellacherie [7] there exists a predictable increasing process (At) 

such that for each X e N  +, m(X)=E(~X tdA,). If we put 

t/'(o; dt, dx) = A(~o, dr) B(o, t; dx), 

it is clear that 11' is a predictable random measure satisfying (3) (by a monotone 
class argument). But (3) also implies that for each Ceg ,  the increasing process 
t/'(]0, t] x C) is the "dual predictable projection" of the increasing process 
t/(]0, t ] x  C), which is integrable. Therefore t/'(]0, t ] x  C) is uniquely defined, up 
to a modification on a P-null set. From the separability of g, the same sort of 
uniqueness holds for the random measure t/'. 

b) Let us deal now with the general case. We can find a ~-measurable partition 
(~),) of f) satisfying M,(t),) < oe for each n. Set 

q,(co; dt, dx)= q(co; dt, dx) l~,(co, t, x). 

From the first part, each q, admits a unique predictable projection q', and we let 
the reader verify by himself that q' = ~ , )  t/' is the unique predictable solution of (3). 

Proof of (2.1). Each of the following subsets of ~ is in ~ and has a Mu-measure 
smaller or equal to 1: [0] x E, IT,, T,+I] x E, and [To, oo[xE.  Therefore (2.2) 
applies. 

(2.3) Proposition. One can choose a version of v satisfying identically 

v({t} x E ) =  1 

v([T~, oe[ x E)=0.  (4) 

Proof Let v be any version of the predictable projection of #. If S is a pre- 
dictable stopping time and if B e ~  s _, we can apply (1) to X(~o, t, x) = 1B(co ) lfsl(cO, t), 
which leads to 

v({S} x E)= E(ANslo~s_ ) on {S < oo}. (5) 

Therefore if B = {(e), t): v(o); {t} x E)> 1} and if S is any predictable stopping time 
with [ S l o B ,  we have P ( S < o e ) = 0 .  But B s ~ ,  so the section theorem for pre- 
dictable sets [7] shows that C =  {co: 3t with v(~o; {t} x E)> 1} satisfies P(C)=0.  
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Now (1) applied to X(co, t, x)=  ltr~,o~t(co, 0 implies that 

O = {co: v(co; [Too, c~[ • E)>0} 

satisties P(D) = 0. Then v'(o9; d t, dx) = 1Be ~ [0, r~[(co, t) V(co; dt, dx) is another version 
of the predictable projection of #, which satisfies (4). 

Equivalent Formulations to (2.1). Using the definition of ~ ,  the fact that ~ is 
generated by the stochastic intervals [0, 7"] where T is any stopping time, and the 
characterization of the dual predictable projection of an increasing process by 
Dellacherie [,71, one may easily prove that: 

(2.4) 7he random measure v is characterized by (4) and the fact that 
(v(]0, t] • B))t>=o is the dual predictable projection of (#(]0, t] • B))t>=o for each Beg.  

(2.5) The random measure v is characterized by (4) and 

(i) (v(]0, t] • B))t>=o is predictable for each B~8,  
(ii) E(v(,10, T] • B))=E(#(]0, T,1 • B))for each B~8  and each stopping time T. 

(2.6) The random measure v is characterized by (4) and 

(i) (v(10, t,1 • B))t>=o is predictable for each Br  
(ii) (v(10, t/x T,,1 • B ) -  g(,10, t ^ T,1 • B))t>=o is a uniformly integrable martingale 

for each n and each BE~. 

When P(T~ < ~ ) = 0  one may also replace (ii) in (2.6) by: 

(v('10, t'1 • B)-#(10,  t] x B))t__> o 

is a local martingale. 

Comments. 1. One may give a slightly shorter proof of Theorem (2.1), without 
using Lemma (2.2). We have chosen this method because (2.2) is interesting on 
its own. 

2. When E reduces to one point, (2.2) as well as (2.1) and its equivalent for- 
mulations are in Dellacherie [,71, or are trivial extensions of his results, v is then 
completely characterized by the increasing process A t = v(]0, t] x E), and (4) yields 
AAt< I and A~=A(r~)_.  

3. For a general E, (2.6) has been shown by Bo~l, Varaiya and Wong [,2,1 when 
each T, is totally inaccessible and P(To~ < ~ ) = 0 .  (2.2) was also already known in 
some cases. For example if r/is an integer-valued random measure such that M, 
is a-finite, then r/is a Poisson measure on E if and only if one can choose r/'(co; dr, dx) 
= dt F(dx) for some a-finite measure F on E (Meyer [13]). 

Also let (Zt) be a Hunt process, and r/the random measure associated to its 
jumps by 

rl(dt, dx) = ~ l~zs_ ,zs~ e(~,z,)(dt, dx). 
s>O 

Then the existence of t/' is known under the name of "L6vy system" (S. Watanabe 
[-221, Benveniste and Jacod [,1]). 

4. The next example shows why the results of the following paragraph are to 
be expected. Suppose E is countable, and (Zt) is a "minimal" right-continuous 
Markov chain with values in E A. (Z,) is a pure jump process and we denote by T. 
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its n-th jump, and Xo=Zo,  X = Z r .  The minimality of the chain means that 
Z, = A if and only if t > T~o. One knows that the probability law of this chain is 
entirely defined by a transition probability Q(i,j) on E, and a positive function 
2(0 on E: (X,), => o is a Markov chain admitting Q for its transition, and conditionally 
with respect to  ~Tn' Sn+l is an exponential variable with mean 1/2(X,). Then the 
predictable projection of # = ~(,)e(r.,x, ) is 

v(dt, i)= ~ I~T~<t<T.+, ~ 2(X,) dt Q(x. ,  i). 
n>O 

3. An Explicit Form for the Predictable Projection- Two Applications 

1. Let P be a probability measure on (O, ~ )  and G.(~; dr, dx) a regular version 
(which always exists) of the conditional law of (S.+ 1, X.+I) with respect to ~-r.. 
Let H.(~o, dt)= G.(~o; dt, Ea), which is the conditional law of S.+ 1. ]=or each o~, 
G.(~o; .)(resp. H.(~o, .))is a probability measure on Ea (resp. ]0, ~]) .  

The following result has been proven for a point process by Papangelou [15] 
in the stationary case and by Jacod [101 in the general case (cf. also Dellacherie [6] 
when there is only one point T 0. 

(3.1) Proposition. Under (A.1) the following formula defines a version of the 
predictable projection of  # (which satisfies (4)). 

G , ( d t -  T,, dx) 
v(dt, dx)= ~ H . ( [ t -  T,, oo]) l~r"<t=<r"+~" (6) 

n>0 

We need parts of the following lemmas, in which we have put all the technical 
results we shall use in this paper, concerning the structure of stopping times and 
predictable processes. 

(3.2) Lemma. Assume (A. 1). I f  T is a stopping time, for each n < oo (resp. n = oo) 
there exists Rn ~(~T.) + such that T A T,+~ =(T, +R,)/~ Tn+ 1 (resp. T= T~o + R~) on 
{T,<__T}. 

Proof The proof is the same for n finite or infinite, provided we read T.+ 1 = oo 
when n = oo. For each s >0  we put F~ = { T n + s < Tn+l}. The a-algebra ~r .+~) -  is 
generated by ~o and the sets D =  {#(]0, r] x B)=p} c~ {r< T,+s}. Set 

D '=  {#(]0, r] x B)=p} n {r< T,} + {#(]0, T,] x B)=p} c~ { T . < r <  T, + s}. 

We have D ' ~ r ,  and D~F~=D'nF~. It follows easily that ~ r .+~) -  ~ F~-- ~ r .  nF~. 
But when s+t, then ~r ,+, )_$~-r ,+t  and F~TFt, which implies that ~-r.+tc~Ft= 
J~r. n Ft. Therefore one can find G t ~ J~r. such that { T< T, + t} c~ F~ = G t c~ Ft. One 
easily checks that the random variable R, defined by { R , < t } = U , ~ . ~ < t G  ~ 
answers the question. 

(3.3) Lemma. Under (A.1) a process (Xt) is predictable if and only if X o is 
~o-measurable and if for each n there exists a ~ r  -measurable z process (Yt") which 
satisfies Yt" =Xr .+ t  on { 0 < t < S , + l }  ( t ~ 0  if  n= oo). 

z That is, such that (~o, t),,~ Y~"(o)) is ~r, | ~ +-rneasurable, where ~+ is the Borel a-algebra of [0, oo[. 



242 J. Jacod  

Proof Necessary Condition. As ~ is generated by the sets A x {0} (with A ~ o )  
and the stochastic intervals [0, T] (with any stopping time T), we need only to 
show that each process X,=  l(t=< ~ (where T is a stopping time) satisfies the con- 
dition. X o is clearly ~0-measurable. If (R,) is the family of variables associated to T 
by (3.2), it is straightforward to check that the condition is met by the processes 
Yt n= I{T <=T}n(t<=R.}" 

Sufficient Condition. We recall the following fact (Dellacherie [7]): each set 
A • {0} (with A~o~o), A x IT,, T,+I] (with A ~ T ,  ), A • [T o, oo[ (with A ~ T ~ ) _  ) 
is in ~,  the last one because T~o is predictable. As ~ T |  V(,)~T, = ~ ,  for a 
process (Xt) satisfying the above condition the result follows easily from: 

{(r t): X,(co)> a} = {(o~, 0): Xo(~O)> a } 

+ ~ {(aJ, t): T,(co)<t< T,+l(co), Yt"_T,(~)(~o)>a} 
n > 0  

+ {(~o, t): T~o (r _< t, Yt~w~(,~)(~O)> a}. 

Proof of (3.1). Let us define v by (6). Clearly enough v satisfies (4). From 

,>_o (,-lS~+, G,(ds, B) .~-r T" G,(ds, B) ) ,  

we see that for each Beg ,  (v(]0, t] x B)),=> o satisfies the condition of Lemma (3.3). 
Therefore v is predictable. Using (2.5), we need only to prove that E(v(]0, T] x B)) 
=E(#(]0,  T] x B)) for each stopping time T. Let (R,) be the family of variables 
associated to T by (3.2). We have 

E(I{T<=T } V(] T,, T,+ 1A T] x B)) 

=E (l{r~ , H,(ds) (l{a,<~, ~ G,(du, B) H.([u, m]) I{"=<R"} 

G,(du, B) )) 
+ I(,_<R,} ~ Hn(Eu , ~ ] )  l(u--<'} ~(u< ~} 

= E  (I(T,=<T~ ~ G,(du, B) oo])+ H,([u,R,]))) U,([u, ~ ] )  I{"=<R"}~{"< ~ 

= G(du,  B) #(] T., T.+, ^ T] • B)). 

If we add these relationships for all n > 0, we get the result. 

2. Uniqueness Theorem. As a first application of (3.1) we give the following 
uniqueness result, which so far seems unknown, even for point processes (how- 
ever, see Orey [14] for results in this direction). 

(3.4) Theorem. Assume (A.1), and let P and P' be two probability measures on 
(0, if) such that 

(i) their restriction Po and Po to (0, ~o) are identical, 
(ii) # admits the same predictable projection for P and P'. Then P and P' coincide 

on (Q, ~ ) .  
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Here again we need a lemma, whose proof is given for example in [101. We 
denote by d the class of all (deterministic) right-continuous increasing functions F 
such that F(0)=0, AF~=F(t ) -F( t - )<I  identically, and F(s)=F(t) for each s>t 
when AF~ = 1. 

(3.5) Lemma. The formulas 

H(]0, t ] )=  1 - e -Fro I~ ((1 - AFt) ears), (7) 
s < t  

F(t) = i 
H(ds) 

o H([s ,  ~]) '  (8) 

define a bijective correspondance between the class ~ ,  and the class of all probability 
measures on 10, oo]. 

Proof of (3.4). If P and P' do not coincide on ~ there exists n > 0 such that 
P and P' coincide on ~r . ,  and not on ~r. .~.  Let G. (resp. G',) be the conditional 
law of (S,+I,X,+I) with respect to J~r., for P (resp. P') and Hn(.)=G,(.,EA) 
(resp. H ' ( . ) =  G',(., En)). Let v be the common predictable projection of #. Using 
Lemma (3.3) we see that for each Beg  there exists a ,~r -measurable increasing 
process ( C~(B)) such that v(lT., T. + t] x B)= Ct(B ) for t < S.+ 1. Set 

i G.(ds, B) D;(B)= i G'.(ds, B) 
Dt(B)= o H,([s, o91) ' o H',([S, col) " (9) 

If Ca is a countable algebra which generate g, we put R=inf( t :  Dr(B):# Ct(B ) for 
some Beg1), S=inf(t :  H,([t, oo])=0), and we define R' and S' in the same way, 
using (D',(B)) and H',. 

It follows from Proposition(3.1) that on {T,<oo, t<S,+i} we have a.s. 
Dr(B) = v(l T,, T, + t] x B). Therefore P(T, < o% R < S,+z) =0. But R is YT -meas- 
urable, thus by definition of H,, 

E(l~r.<o~ } H,(]R, oo])) = P(T, < o% R < S , + , ) = 0 ,  

which yields P(R<S, T,< oo)=0. In the same way, P'(R'<S', T,< oo)=0. But R, 
R', S, S' and T, are fiT -measurable, and P and P' coincide on fiT." Therefore if 
f2,={T,<oo, S<R,S'<R'} and f2',={T,<oo}, we have P( , - f 2  ) = P  (~2 -(2,)=0.  

Let ogef2,. We have Dt(E~)=D~(E~) for each t<SAS '  (because S<R and 
S' <R').  But if S <  o% either Ds_(Ea)= o% or ADs(E~)= 1 and Dt(E~)= Ds(EA) for 
t > S. The same holds for D~(E~), and it follows easily that the two processes (D,(E~)) 
and (D't(E~)) are identical, which implies //,(co, .)=H~(a), .) from Lemma (3.5). 
The same reasonning proves that (Dr(B)) and (D;(B)) are identical for each Beg~, 
and from (9) we deduce that G,(co;., B)= G',(co;., B). In other words, G, and G', 
coincide on f2. As ~T,.~----O~TV a(S, + 1, X, + 1), P and P' coincide on ~'~T. +, C~ I2. 
By hypothesis they also coincide on O~T,., C~ {T,= oo} =fiT.  m {T,= oo}, and they 
do not charge f 2 ' -  f2,. Therefore they are identical on YT,.~, which brings a 
contradiction. 

3. Construction of P when v is known. Here we come to the main concern of 
this paper: the converse to Theorem (2.1). Actually, a glance to (2.3) and (3.4) 

17 Z Wahrscheinlichkeitstheorie verw. Oeb., gd. 31 
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leads us to ask the following question: let Po be a probability measure on (O, ~o), 
and v be a predictable random measure satisfying (4). Can we find a (unique) 
measure P on (f2, ~-~) whose restriction to o~ o is Po, and for which v is the pre- 
dictable projection of #? 

Undoubtedly we cannot answer this question in the general case, because v 
brings some information on # only, that is the a-algebras fqt. Under (A.1) we 
already know that if P exists, it is unique, but P does not need to exist (for example 
suppose that if, c o~ o for each t. Then for any probability measure, the predictable 
projection of # is # itself, and any other random measure v will bring a negative 
answer to the above question). 

However we can answer this question under a stronger assumption, which is 
as follows. Let O' be the set of all possible multivariate point processes, that is of all 
sequences (T,', X~), >_1 satisfying conditions (i)-(iii) of Section 1-3. 

(A.2). (Q", ~ " )  is an arbitrary measurable space, O = ~2' x t2", the multivariate 
point process is (T,,X,)(ar where co=(ar and the 
a-algebras are ~o = {g[, O'} |  and ,~=O~o vff,.  

In particular this includes the case of "self-exciting" multivariate point 
processes, when t2" reduces to one point (in other words, it suffices to consider 
t2 = Q'). The space (Q", ~ " )  may also have the signification of the "past" before t = 0. 

(3.6) Theorem. Assume (A.2). Let Po be a probability measure on (t2, O~o) and v 
a predictable random measure satisfying (4). Then there exists a unique probability 
measure P on (O-l, ,~+) whose restriction to ~o is Po, and for which v is the predictable 
projection of #. 

Proof Using Lemma (3.3) we see that for each n and B e g  there exists a 
,~r -measurable increasing process (C~'") such that C~'"= v(] T,, T,+t ]  x B) on 
{T .+t<  T,+I}. Due to the particular structure of t'2 we see that C~'" is uniquely 
determined for all t > 0, provided we put C~'"= 0 if T, = ~ .  We see also that each 
process (C~'"). is "a-additive" in B. Therefore if vtc" = vtcE,", there exists a transition 
probability C"(a), t; dx) from (Q x [0, ~ [ ,  ,~T |  over (E, g) for which we have 

t 

= s; B) 
0 

Put %=inf(t :  A C?= 1) and Fr"= C?^~. For each n and co, (Ft"(co))t> o belongs 
to the class ~ and from Lemma (3.5) there exists a probability measure H~(~o, .) 
on ]0, ~ ]  satisfying (7) and (8). Actually (7) shows that H, is a transition from 
(t2, ~T,) over ]0, ~ ]  (because (F~") is ~-r -measurable). Let G, be the following 
transition probability from (O, ~-r,) over (E A, ga): 

G.(co; dr, dx)=H,(co, dt) C"(o~, t; dx) l{t < +} + H,(co, {oo}) e(+,a)(dt, dx). 

Next we construct P. Let P. be a probability on (Q, "~T,)" Using once more the 
structure of ~, we see that the next formula (where B e ~ r ,  and C~gA) defines a 
probability P.+I on (Q, ~T.+~): 

P,+~(Bc~ {(S,+~, X,+x)eC})=~P,(doo) 1,(co) G,(~o; C). (10) 

Starting from Po, which is given, we define P. by recurrence, using (10). Clearly the 
restriction of P.+I to "~T, is +P.. But (Q, ffoo) (resp. (O,,~T.)) is isomorphic to 
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N . . . .  po  ...... }| |  So the family (P,) can (E~ x f2 ,  ~ |  |  (resp. (g {1 . . . . . .  }X ~ , v  A 
be extended in one and only one way to give a probability P on (f2, Yo). 

We have now to prove that P solves our problem. By construction the restriction 
of P to o~ o is Po, and G, is the conditional law of (S,+ 1, X,+,) with respect to ffT," 
Using (6), (8) and the definitions of G., e, and (CtS'"), we see that a version v' of the 
predictable projection of # is given by: 

u'(dt, dx)= ~ F " ( d t -  r,) cn(t - T,, dx) l{r,<t=<r.+l}. 
n>O 

= ~ v(dt, dx) l~r,<,=< r . . . .  (rn+~,)}" 
n>0 

But from (7) we have H,(]e, ,  oo])=0 if c~< o% which yields P(c~ < S , + 0 = 0 .  In 
other words v and v' are identical except on a P-null set, and v is also a version of 
the predictable projection of # for P. At last uniqueness for P has already been 
shown. 

Remark. If we impose T o = oe a-priori, we have nothing like the previous 
result. For  example let us suppose that E reduces to one point. If T o = oo every- 
where, for any measure P the predictable projection of N is an increasing process 
A=(At) with A A t < I  and At<oo a.s. But let us define the following process by 
recurrence: Ao=0  , A T , + t = A r + n Z t  on {t<Sn+,}. On the space f2 i of all point 
processes with T o = o% A is a continuous increasing process with A~ < oe every- 
where. However it is impossible to find a probability P1 on s 1 for which A is the 
predictable projection of N. The previous result shows the existence of a unique 
probability P on I2' which answers the question, but we have P(Q'~)=0 (in fact 
for P we have E(To) = ~ 1/n 2 < o0). 

4. Absolute Continuity of Predictable Projections 

In this section we suppose that P is a probability measure on (fl, ~ )  and that v 
is a version of the predictable projection of/~ which satisfies (4). 

The next theorem asserts that if P' is another probability measure on (~2, i f )  
which is absolutely continuous with respect to P (we write P ' ~  P), then one can 
choose a version v' of the predictable projection of p for P' such that v' ~ v (that is, 
v'(o); .)~v(co; .) for P-almost every co). However let us remark that we may 
change v' on a U-null set, and thus find another version of v' which does not 
necessarily satisfies v '~  v, in case P ~ P '  does not hold. 

(4.1) Theorem. Let P' be a probability measure on (f2,~,~) satisfying P ' ~ p .  
There exists a finite Y e ~ +  such that 

(i) v'= Y. v 3 is a version of the predictable projection o f#  for P', and 

(ii) v'({t} x E) < 1 and v'({t} x E) = 1 whenever v({t} x E) = 1. 

As for (2.1), this theorem is a particular case of a more general result, which is 
interesting in itself. For each random measure t/, (2) defines two measures M, 
and Ms on (~, ~), corresponding to P and P'. 

3 y .  v s tands for the r andom measure Y(co, t, x) v(co; dt, dx). 
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(4.2) Lemma.  Let us suppose that P' ~ P. Let t 1 be a random measure such that 
M, is a-finite. I f  p is the predictable projection of t 1 for P, let us assume that M' o 
and Ms are a-finite. Then there exists a finite Y ~ +  such that Y. p is a version of the 
predictable projection oftlfor P' (in other words, M~ ~ Mj and Y is a version of the 
Radon -Nikodym derivative dM',/dM'p). 

Proof Let Z be a version of the R a d o n - N i k o d y m  derivative dP'/dP, and (Zt) 
be a version of the martingale E ( Z I ~ )  which is r ight-continuous and has left-hand 
limits. As Ms is a-finite, t /admits  a predictable projection p' for P'. Let X e ~  + be 
such that M,t(X ) and M',~(X) are finite. Then the three processes (t/(Xl~z >o}))t, 
(P'(XI~z o}))t and (PX)t are integrable increasing processes, the two last ones 
being predictable. Therefore we can apply the following result [7, IV-T-47 and 
V-T-27] to these processes: if (Bt) is an increasing process, E(ZBoo ) = E(SZ t dBt), 
and E(ZBo~) = E(SZ t _ dBt) when (Bt) is predictable. Using M'~ = M' o, and M~ = Mp, 
we obtain:  

M'n(X l/z_ = o}) = E'( ~_ X(t, x) l(z,_ = o} p'(dt, dx)) 
E 

(11) 
=E(~_X(t, x) l{z,_ =o} Zt -  p'(dt, dx)) = 0, 

E 

M',(X) = E'( ~_ X (t, x) l(z~_ > o} tl(dt, dx)) 
E 

(12) 
= E( I X(t, x) l{z~_ >o} Zt tl(dt, dx)), 

M'p(X) = M p(XZ_)= E(_~ X (t, x) Z t_ tl(dt, dx)), 
E 

(13) 

(11) being used to get (12). F rom (12) and (13) we deduce that Ms and any 
finite Y ~ +  such that M~ = Y. M~ answers the question. 

Proof of (4.1). (i) We have already seen that M,  and M', are a-finite. Let 
S=inf ( t :v(]O, t]xE)>n) .  We have v ( ]O,S , ]xE)<n+l ,  and l imS,>To~ a.s. 
Therefore M" is finite on each of the following ~-measurab le  sets: [0] x E, 
] S , , S , + I ]  x E  and [So~, o o [ x E  (with Soo=limS,).  Then (i) follows from Lem- 
ma (4.2), and we put  v'= Y. v. 

(ii) To simplify the notations,  we put  at=v({t } x E) and a't=v'({t } x E). Let 
Y'(o~, t, x) = Y(w, t, x) if a t < 1 and a; < 1, or if a t = a; = 1 and Y'(w, t, x) = 1 if not. 
If we show that Y' differs from Y only on a U-null  set, then Y' will satisfy (i) as well 
as (ii). For  this it is sufficient to prove that, if S = inf(t: a t = 1 + c(t) and S' = inf(t: a' t > 1), 
then P'(S A S ' <  oo) =0 .  But (2.3) applied to P' implies P'(S' < oo) = 0. The stopping 
time S is predictable, and from (5) we get as=E(ANsl~s_)=l  on {S< m}, thus 
AN s = 1 P-a.s. on {S < oo }. F rom (5) again, a s = g'(AgslJ~s_)= 1 P'-a.s. on {S < oo}, 
which implies P'(S < oo) = O. 

Remark. One could give a slightly more  explicit form for Y. Namely  one can 
show (a) that there exists a finite Z ' e ~  + such that Z' .  v is the predictable pro- 

Z' 
jection of the random measure tl(dt, dx)= Z~ #(dt, dx), and (b) that Y= l/z - > o} Z 
satisfies (4.1)(i). 
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We turn now to the converse of (4.1), namely the possibility of finding a P' ~ P  
for which the predictable projection of # is Y. v, where YE~ + is given. If we can 
solve this problem, we shall have another method for constructing a probability 
when the predictable projection of # is known, under some conditions hopefully 
more general than (A.2). 

For  notational simplicity, we put a t = v({t} x E) as above. Let also 

S =inf(t: t >  T~, or v(]0, t ] x  E)=  oo). 

If Y e ~  +, we define Y by ~=~EY(t ,x)v({ t} ,dx) .  At last the "continuous part" 
of v is defined by vC(dt, dx)= l~,=o~v(dt, dx): in fact, vC(]0, t] x E) is exactly the 
continuous part of the increasing process v(]0, t] x E). 

The next result is crucial. It is well known when # is a Poisson measure for P, 
and the proof given here partly borrows from Br6maud [-31. There is also some 
similitude with results of Ito and Watanabe [8]. 

(4.3) Proposition. Let Z o e ~  ~- be finite and such that E(Zo)=I .  Let Y ~ +  
be finite and such that Y< 1, and Yt = 1 wherever a t = 1. Then 

t 

Z, = ,  .exp~ ~(1-Y(s,x))vC(ds,  dx) if t < S ,  (14) 
0 E  

lira in fZ  s if S___ t 
s~iS 

is a right-continuous supermartingale (Zt) o <=t <= oo. 

In (14) we make the usual convention 0/0=0.  We shall see below that this 
formula makes sense. The assumptions made on Y are the conditions (4.1)(ii). 

(4.4) Lemma. I f  (Bt) is a predictable increasing process and/f  S~o = inf(t: B t = oo), 
there exists a sequence (S,) of stopping times increasing a.s. towards S~ and such 
that E(Bs~ ) < oo for each n. 

Proof Put R,=inf( t :  Bt>n ). The set {(co, t): n<Bt(co), t <R,(co)} is predictable, 
and it is the graph of a random variable V,. Thus V, is a predictable stopping time 
[6, IV-T-15]. There exists a stopping time V~ such that V'<V, and that 
P(V,-V~<=2-")<27".  P ' ' ' _ _ ut S, = R, A Vs and S, = S t v -.. v S',. We have S', < S, < R, 
and P ( R , - S ' , < 2 - " ) < 2 - " ,  therefore S, increases a.s. towards S~o. Also Bsa<n , 
thus Bs, < n and the result follows. 

1 
Proof of (4.3). a) Let v ' = Y . v ,  X~-l_c~m-l~,<l~,  T~=inf( t : t>T, ,  or 

' >_ T' ' _  v(]0, t] x E) > n, or v (]0, t ] x  E ) _  n), and ~ = lim T', which satisfies T~ < S. Using 
the assumption that ~ = 1 if c S = 1, for each t < S we have clearly 

Z,<=Zo( I~ Y(T,, X,))(I~X~)exp(v~(]O, t] x E)). 
T~<t s<__t 

But H~_<t X~ is increasing in t and finite for t <S  (this comes from an easy compu- 
tation). Then it follows that: 
I7a  Z. Wahrscheinlichkeitstheor e verw. Geb., Bd 31 
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(i) Zt is well defined (there is no undetermined form in the product (14)). 
Clearly (Zt) is right-continuous, and each Z t is o~-measurable. 

(ii) If R, = inf(t: Z, > n), then lim R, > S. 

On the other hand let T" < t < S. Then either v'C(]0, t] x E) = oo and 

t 

exp~ ~(1 - Y(s, x))vC(ds, dx)=0 ,  
OE 

or ~_<t ~ = 0% which implies that 

II 
s < t , s ~  T .  

1 ~ -  ~ \ + )=o. 

Thus in both cases we have Z t_ = Z t = 0 .  Therefore for each t >  T~, we have 
Z t =lira inf s, r;~ Zs. Now, using the fact that Z, is non-negative, Fatou's lemma, 
and the above fact, we see that the proposition will be proven if we exhibit a 

' n sequence (S,) of stopping times increasing a.s. towards T~, a d such that (Z,,, s.)t>= o 
is a uniformly integrable martingale for each n. 

b) Let us recall an elementary fact. If a t (resp. bt) is a continuous (resp. purely 
discontinuous) function from [0, s] into IR, with bounded variations, and if 
c t = co(l-I, =<t(1 + A br) ) exp(a t - ao) on [0, s], then 

ct = Co + i G-  (da, + dbr). 
0 

Let us fix chef2 and s<  T~ (co). We can use this result with c t=Z t and 

t 

a t-- j" f(1 - Y(r, x))v~(dr, dx), 
OE 

b,= E (Y(T.,X.)-I)+ E 
Tn<-_t r<=t, r4: Tn 

(We have s < Too, v(]O, s] x E) < oo and v'(]O, s] x E) < o% which imply that a t and b t 
have bounded variations on [0, s].) As everything is bounded for t __< s, we can write: 

(Zr--  Yr 
at+b,= i S( 1 -  Y(r,x))(v(dr, dx) -#(dr ,  dx))+ ~ 1-Z_~ 

0 E r <-t 

~Tn - -  Yr. Z (~, - Y,) 
Tn<=t r<_t 

= Y(r, x) + ~ _ ~ )  (v(dr, d x ) -  #(dr, dx)). 

a , - ~  1 
Finally if V(t, x ) = Z  t_ ( 1 -  Y(t, x) + ~ ) ,  we get: 

z, = Zo + i I V(r, x)(v(dr, dx)-  (dr, dx)) (lS) 
O E  
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for t < s (we recall that s < T" (co)). In addition if we use the statement (ii) above, and 
once again the bounded variation of a t and b t, we see that (v(I V I))s < oo. 

On the other hand V is ~-measurable. If we apply (4.4) to the increasing 
process (v(I V[))t, we conclude to the existence of a sequence (S,) of stopping times 
which increases a.s. towards T" and such that E((v([ V I))s,)< oo for each n. From (1) 
we see that E((#(lgl))s.)< oo also holds. Let Z t = Z t ^ s .  From (15), 

z7 =< zo + + v)(I vl)) o ̂ ,, 

which proves that the process (Z~') is uniformly integrable. At last if B~o~, then 
X(r, x)= V(r, x) 1B l{t^s.<,=<(~+s)^s. ~ is ~-measurable, and from (1) we obtain 
(everything is finite): 

E(1 R(Z~' + ; -  Z'~)) = E( ~ X (r, x)(v(dr, d x ) -  #(dr, dx)))-- O. 
E 

Therefore (Zt) is a martingale and (4.3) is proven. 

We can now state a partial converse to (4.1): 

(4.5) Theorem. Let Z o and Y be like in (4.3), and (Zt) be defined by (14). I f  
E(Zoo ) = 1, then Y.  v is a version of the predictable projection of # for the probability 
measure P' defined on (s ~,~) by P'(dca)= P(dco) Z ~(cn). 

This result partially solves the problem stated before Proposition (4.3). More 
generally one could show that if T is a stopping time for which E(Zr) = 1, then the 
multivariate point process truncated at T (i.e.: # r =  1]0,r]" #) admits the random 
measure Y. v truncated at T (i.e.: v ) =  l]0,r I Y. v) as its predictable projection for 
the probability measure F defined on (f2, ~ )  by P' = Z r �9 P. The proof would be 
similar. 

Theorem (4.5) is the counterpart of Girsanov's theorem, for pure jump pro- 
cesses. When the increasing process (v(]0, t] x E))t__> o is absolutely continuous 
with respect to the Lebesgue measure, it was already known: cf. for example 
Grigelionis [8] (even when # is not a multivariate point process, but a more 
general integer-valued random measure). 

Proof Let X ~  + be such that Mu(XY)< oo. From (14) we have Zr  =Z(r.)_ 
- Y(T,, X,), and clearly (Z~) has left-hand limits except possibly at S, and a.s. a left- 
hand limit at S. Then using the method which allowed us to get (11), (12) and (13), 
we obtain" 

M',(X) = E( ~ Zt X(t, x)#(dt, dx))= Z E(X(r,,  X,)ZT~ 
E n>-O 

= Z e(x(r. ,  X.) r(r . ,  X.) 
n__>O 

= E(~ X(t, x) Y(t, x) Z t_ #(dt, dx))= M ' ( X  Y), 
e 

and the result follows. 

5. Radon-Nikodym Derivatives and Representation of Martingales Under (A.1) 

1. We start with the same assumptions that in Section 4. Theorem (4.5) tells 
us that ff Y and (Zt) are like in (4.3) one can find a probability measure P' ~P. for 
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which Y. v is the predictable projection of #, under the additional assumption 
that E(Zoo)=l. It turns out that, under (A.1), this additional assumption is 
necessary as well as sufficient: 

(5.1) Theorem. Assume (A.1). I f  P' ~P, let Y be the process introduced in (4.1), 
Z a version of the Radon-Nikodym derivative dP'/dP and Z o a non-negative finite 
version of E(ZJJo). 7hen (14) gives a version (Zt) of the martingale E(Z]~) .  

In the same way that for (4.5) one would have similar results for the restriction 
to any stochastic interval [0, T], where T is a stopping time, under the only 
assumption that Pr ~ Pr where F r and Pr are the restrictions of P' and P to (Q, O~T). 

When ~ = ~t, when # is a Poisson random measure for P, and under the 
(unnecessary because of (4.1)) assumption that the predictable projection v' for P' 
satisfies v'~v, this result has been shown by various authors: Skorokhod [-19] 
when Y is deterministic, Snyder [20], Rubin [16] and Br6maud [3] for point 
processes (with strong assumptions in [20] and [16]), Segall-Kailath [-17] and 
Bo~l-Varaiya-Wong [2] for a general space E. 

Proof Let v '=  Y.v, (Zt) defined by (14), T" and (S,) like in the proof of (4.3). Let 
�9 �9 " -  o ~ " - ~ .  We denote by Pn=llo,s .]  Ig vn=llo ,  S,d'V, V'n=llo,S.] V', Z t - - Z t ^ s , , ,  -- t^s." 

P" (resp. P'") the restriction of P (resp. P') to (f2, ~-~). 
On the space (f2, J~ )  equipped with the family (o~"), #, admits v, (resp. v~) as its 

predictable projection for P" (resp. P'"). By definition of S,, (Z~) is a uniformly 
integrable martingale. Thus E"(Z~o)= 1 and P""=Z"oo. P" defines a probability on 
(f2, ~-~). But one checks easily that when we start with Y, Zo, #, and v,, (14) gives 
the process (Z~). Therefore (4.5) implies that v', is also the predictable projection 
of #, for p,,n. NOW the restrictions of P'" and P"" to ~0 are identical (they admit 
the same density Z o with respect to P), and o~"= ~o" v f#~ where ( ~ )  is the family 
of o--algebras generated by #n" SO (3.4) implies that P'" = P"" on (f2, o~"). In other 
words Z~=E(ZI~s.)  (because O~s = ~ ) ,  which implies Zs.^t=E(Zl~s.^t)  for 
each t > 0. 

With the notations of (4.3), we have clearly P(S < T~)= P'(T" < S)= 0 and thus 
Z = 0  P-a.s. on {T" < T~o }. We have seen that Zt=O if T~oNt<S, and thus except 
on a P-null set, we have Z t = 0 if T~ < t < T, .  We obtain: 

E(ZI~T.)=II~ E(Z I(r.<s~I~r,) + E(Z I(T~ <_ TJ~T.) 

= l i m Z  r l (r ,<s~)=l(r .<r~lZr=Zr,  P-a.s. 
(p) " 

One easily deduces that Z r , ^ t = E ( Z l ~ r . ^ )  for each t>0.  We have also seen that 
Z t = lim inf s, r= Zs if t > T~. Then 

E(Z]o~)=lim E(Z l(t<= r.)l~) + E(Z l(r~<=t~lJ~) 

�9 =l im Zt l(t=<r.~+ X(r~=<,~E(Zl V ~-r.) 
(n) 

= Zt l(t< r~/+ I(T~ <__t} lim Zr .  = Z t. 

The result (c) announced in the introduction is then a corollary of the previous 
theorem: 
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(5.2) Theorem. Assume (A.1). Let Z o and Y be like in (4.3), and (Zt) be defined 
by (14). Then there exists a probability P' on (f2, ~ )  such that P' ~P,  that Y. v is a 
version of the predictable projection of # for P', and that the restriction of P' to 
admits Z o as its density with respect to P, if and only if E (Z~)=  1. In this case the 
restriction of P' to ~ is unique. 

2. Representation of Martingales. As a corollary of the preceding results, we 
obtain a representation of each martingale (or local martingale) as the integral 
of a ~-measurable process defined on g), with respect to the random measure 
v - # .  More precisely we have the two results: 

(5.3) Proposition. Let X be a finite ~-measurable function on (2, satisfying: 

i S[X(s,x)lv(ds, dx)<oe a.s. on {t<Too}. (16) 
OE 

Let (Zt) be a right-continuous process adapted to (o~t), such that 

Z t = Z 0 +  i SX(s,x)(v(ds, d x ) - # ( d s ,  dx)) a.s. on {t<Too}. (17) 
0 E 

Then there exists a sequence (S,) of stopping times increasing a.s. towards Too , for 
which (Zt^ s,)t>=o is a uniformly integrable martingale for each n. 

This statement could be expressed as follows: if X satisfies (16), then (17) 
defines a "local martingale on [0, T| However (17) makes sense only where 
the inequality in (16) holds, so (17) actually defines Z t only on a P-full set. If we 
extend arbitrarily Z t outside this set, Z t may happen to be measurable with 
respect to the completed ~-algebra ~t  of o~t, but not with respect to ~t itself. 

(5.4) Theorem. Assume (A.1). Let (Zt) be a right-continuous process. Then there 
exists a sequence (S,) of stopping times increasing a.s. towards Too, for which 
(Zt ̂  s,)t>=Q is a uniformly integrable martingale for each n, if and only if there exists 
a finite ~-measurable function X on (2 satisfying (16) and (17). 

We emphazise the fact (17) is an ordinary integral (which can evidently be also 
considered as a "stochastic integral", although there is no need for that). Theo- 
rem (5.4) generalizes well-known results concerning the representation of martin- 
gales as stochastic integrals of a predictable process with respect to a fundamental 
martingale (for Poisson and Wiener processes). 

Theorem (5.4) has been shown (when P(Too = oe)= 1) for point processes by 
Chou and Meyer [5] by a direct and simpler method (which can undoubtedly be 
extended to our situation). One can also show (5.4) by using the theory of stochastic 
integrals with respect to square-integrable martingales, and then deduce (5.1) 
from (5.4) (Bo~l-Varaiya-Wong [2], Segall-Kailath [20]), but besides the fact 
that this method requires a difficult theory, its application is rather tedious and 
involves some unnecessary assumptions. 

Proof of (5.3). From (16) and (4.4), there exists a sequence (S,) of stopping 
times increasing a.s. towards Tooand such that E(v([X[)s, ) is finite for each n. One 
can then duplicate the end of the proof of (4.3) (with V= X). 
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Proof of (5.4). The direct part is another formulation of (5.3). For the converse, 
let us start with a positive uniformly integrable martingale (Zt) with E(Zo)= 1. 
Applying (5.1) to P' =Zoo �9 P, we see that (Z~) is a.s. of the form (14), for a suitable 
Ye~+.  After throwing away a P-null set, we can suppose that (Z~) satisfies (14) 
identically, and also S =  Too. Using the notations of (4.3), we see that (15) holds for 
t T~ But Z~=Z(T; )_=0  if T~o<t<Too, thus V=Vllo,r;o I and (15) holds for 
t < Yoo. 

In other words, if X = V, Z t equals the right-hand side of (17) for each t <  To~. 
From (4.3) we also know that (16) holds for t <  T ' ,  and it remains to prove (16) 

whent=T~<T.  As t<S,  we have fl=sup ( c~1__~% l{,~<ll, S=<t)<oo andfrom(14 ) 
there exists 7 < oe such that 

Z~_ <7 e x p ( -  2 g 1{=~<1) -v 'c(]0,  S] • E)) (18) 
r ~ s  

for s < t. The left-hand side of (16) is smaller than 

iZ~_ (1 % 1 \ - ~ - ~ s  {CLs<l}]Y(ds'E) 
o ^ (19) 

+ ! Z ~ _  Y(s,x)+ 1{~<1} v(ds, dx) 

(by using the form of V). From the finiteness of fl, 7 and v(]0, t] x E), the first part 
of (19) is finite. From (18), the second part of (19) is smaller than 

t 

S exp( - v'C(]0, s] x E)) v'C(ds, E)+ 7(1 + fl) 2 g e x p ( -  2 g),  
0 s<t r<s 

which is finite. Thus (16) holds for each t < Too. 
Now let (Zt) be any uniformly integrable martingale. If Z + (resp. Zgo) is the 

positive (resp. negative) part of Zoo, one can apply the preceding result to the 
martingales 

+ ~ E(Z~ I~,) E(Zoo I~,) z;- 
z + =  E(z~)  ' E(z~)  

At last let (Zr be a process satisfying the condition stated in (5.4). Put Z~ = 
E(Zs, ^ t -Zs ,_  l z~ [~s, ^ t): each (Z~) is a uniformly integrable martingale, to which 
corresponds a ~-measurable X, satisfying (16) and (17). We have Z~ = 0  if t < S,_ 1 

n n �9 > ' X and Z, =Zs ,  ift=S,, thus X ;=  , 1]s._,,s~ a still satisfies (16) and (17). But Z,=~(.)Z'~ 
if t < Too, therefore X = ~,(.) X" solves the problem. 
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