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Summary. Let {X(s), —oco<s<oo} be a normalized stationary Gaussian
process with a long-range correlation. The weak limit in C[0,1] of the

xt

integrated process Zx(t):a;j G(X(s))ds, x > o0, is investigated. Here d(x)
0

=x"[L(x) with L<H <1 and L(x) is a slowly varying function at infinity. The
function G satisfies EG(X (s))=0, EG*(X(s))< oo and has arbitrary Hermite
rank m2=1. (The Hermite rank of G is the index of the first non-zero
coefficient in the expansion of G in Hermite polynomials.) It is shown that
Z (1) converges for all m=1 to some process Z, (1) that depends essentially
on m. The limiting process Z,(f) is characterized through various repre-
sentations involving multiple It6 integrals. These representations are all
equivalent in the finite-dimensional distributions sense. The processes Z,,(f)
are non-Gaussian when m>=2. They are self-similar, that is, Z,(at) and
aZ (1) have the same finite-dimensional distributions for all a>0.

§ 1. Introduction

Self-similar processes have recently attracted the attention of mathematicians
such as Sinai (1976) and Dobrushin (1979), and physicists such as Jona-Lasinio
(1977), because of their relevance to the renormalization group approach in
physics. Self-similar processes are also of interest in hydrology where they
account for the so-called “Hurst effect”. See Jona-Lasinio (1977) for a review of
the physics literature, and Lawrance and Kottegoda (1977) for a review of the
literature in hydrology.

Dobrushin (1979) has introduced a general framework for the study of
stationary self-similar random fields. They are defined as generalized random
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functions on the Schwarz space S(IR”) of test functions or on some subset
thereof. In some cases, the domain of definition of these fields can be extended
to include indicator functions of rectangles in R”, of intervals when v=1. In the
latter case, the self-similar random fields become self-similar stochastic processes
with stationary increments. Stochastic processes of this type are central to this
papet.

Definition 1.1. The stochastic process {Z(t), —oo<t< o0} is self-similar with
parameter H, if it satisfies the scaling condition

Z(ahLa8Z(t), a=0, (1.1)

where £ denotes equality of the finite-dimensional distributions.

For instance, Brownian motion is self-similar with parameter H =3, and
. . . 1

more generally, a stable process is self-similar with parameter H=—, 0<a 2. In
o

such examples, the increments Z(¢+1)—Z(t) are independent over disjoint
intervals. But there are also self-similar processes whose increments exhibit a
long-range dependence.

Indeed, if $<H <1, and if Z(f) has stationary increments and satisfies Z(0)
=0, EZ(t)=0, EZ*(1)=1, then, necessarily, EZ*(t)=]t|?¥,

EZ(t,) Z(ty) =5 {It,P7 +1t, P ~ 1t — 1,12}

and thus, the correlations of the increments Z(t+1)—Z(f) decrease slowly to
Zero,

E(Z(t+1)—Z())(Z(s+t+1)—Z(s+H)~HQH —1)s2H~2

as the lag s tends to infinity (a,~b, means a,/b,—>1 as k—o0). This slow
decrease of the correlations is an expression of the long-range dependence of the
increments. The Gaussian fractional Brownian motion (see Mandelbrot and
Van Ness (1968)) and the non-Gaussian Rosenblatt process (see Tagqu (1979))
are two examples of self-similar processes whose increments exhibit a long-range
dependence. More examples can be found in Dobrushin (1979).

There are two important open problems concerning self-similar processes:

1) the characterization of all self-similar processes.

2) given a self-similar processes, find its domain of attraction.

Dobrushin (1979) deals directly with the first problem. Davydov (1971),
Taqqu (1975), and recently Dobrushin and Major (1979), characterized sta-
tionary sequences of random variables whose normalized sums converge weakly
to self-similar processes.

In this paper, we consider a continuous version of the problem attacked by
Dobrushin and Major (1979). We introduce the integrated process

1 Xt
2035 6[ G(X(s)ds, x>0 (1.2)
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and prove, using a time-indexed representation for Z,(¢), that, as x— o0, Z,(t)
converges weakly in C[0, 1] to a self-similar process. C[0, 1] denotes the space
of continuous functions on [0, 1] with the sup-norm topology. The function G
satisfies EG(X(s))=0 and EG*(X(s))<oo and {X(s), —c0<s<o0} is a con-
tinuous parameter, stationary, normalized Gaussian process, exhibiting a long-

range dependence (sce the following section for precise assumptions on X (s)).

2
The normalization factor d(x) is chosen such d*(x)~E (j G(x(s))ds) as x— 0.
0

Because of the strong dependence, Z (f) does not converge to Brownian motion.
The weak limit Z (t) depends on the Hermite rank m of G, that is, on the first
non-zero index in the expansion of G in Hermite polynomials.

We prove here that Z_(t) converges weakly for all m=1. The limiting process
Z,(t), which depends on the Hermite rank m, can be represented as

Z (1)= KmHO){j dB(&)) 3‘ dB(¢,) éj dB(¢

or——n.

ﬁ(s 5)Ho—f1 ¢, <s)ds} (1.3)

i=1
that is,
é

0 1 Em—
z‘m(r)=K<m,Ho>{de<zl 5(e)... T an | [T s—e v

e *ZD

t Em-1 t m
+ [ dB(¢)) j dB(&,)... | dB(¢,) | H HO’gds}. (1.4)
0 o & i
In (1.3) and (1.4), B represents the standard real-valued Gaussian white noise
measure,
1
1—%<H0<1, (1.5)

is a parameter, and
m!(m(Ho—1)—ir1)(2m(Ho—I)Jrl)ll/2
<[ (u+u2)H°“%du) J
o}

_{m’(m(Ho— 1)+ 1)@2m(Hy—1)+ 1)(F(§—HO))'"}1/2
- (F(Hy~HTQ2—2Hy)"

K(m,HO):[

(1.6)

is a normalization coefficient ensuring EZ2(1)=

The representation (1.4) of the process Z,,(t), m=1 was introduced in Taqqu
(1978a). The Z,(t)s belong to I*(P), the Hilbert space of functions that are
square integrable with respect to P, P denoting the measure of the underlying
probability space supporting B. The Z_(t)’s have stationary increments and they
satisfy Z,(0)=0, EZ,(t)=0 and EZ2(t)=|t|*". They are non-Gaussian when
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m=2. Explicit formulas for their moments can be found in Theorem 3.1 of
Tagqu (1978a)" >, These moments may not necessarily characterize a unique
distribution in the case m=3, and therefore the method followed in this paper
avoids the use of moments higher than 2.

The processes Z,,(t) are self-similar with parameter

H=m(H,—1)+1, (1.7)
. 1 o
and since 1_2_r;<H o<1, the parameter H satisfies

1<H<1 (1.8)

for all m=1. Z,(¢) is fractional Brownian motion and Z,(t) is the Rosenblatt
process. 1 W,

By specializing our theorems to the discrete parameter case d(—NS Y G(X)),
i=1

we recover some of the results obtained by Dobrushin and Major (1979).
Dobrushin and Major work in the spectral domain and exploit the fact that the
spectral measure of the underlying Gaussian sequence has bounded support.
The limiting process that-they obtain is characterized through a spectral
representation, of a type introduced by Dobrushin (1979) in his Theorem 6.3.
That representation is shown in Sect. 6 to be equivalent to (1.3). '
Assumptions on X(s) are listed in Sect.2. The fractional Gaussian noise
process is introduced in Sect.3 as an example of a possible X(s). Section 4
contains preliminary lemmas. The main results about weak convergence are
found in Sect. 5. Section 6 contains various equivalent representations for Z, (¢).

Some Remarks on the Notation

The three fundamental parameters are m, H, and H. m=1 is the Hermite rank,
H,, which is required to satisfy (1.5), involves the underlying Gaussian process
X (s), and H, is the self-similarity parameter of the limiting self-similar process.
m, H, and H are related through (1.7) and one always has s<H <1. H and H,
are identical when m=1.

We now relate these parameters to those used in other papers.

The parameter D in Taqqu (1975; 1977; 1978a) is here D=2—2H,,.

1 A more specific evaluation of some of the moments can be found in Taqqu (1977), p. 228, after
setting D=2—2H, and

111, 1)
(1, (1, Y2

2 Errata. In the statement of Theorem 3.1 of Taqqu (1978a), the right hand side of C(m, D) should
be multiplied by (m!)*/? and the right hand side of K should be replaced by its square root. Also, line
9, p. 62, should read “m!t~™P+2/C%(m, Dy< o0”. The constant C(m, D) in that paper is identical to
our K(m, Hy) with D=2-2H,

EZ, (1) Z,(t) .- Z,t) =
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The parameters v, n, r and x in Dobrushin (1979) are here v=1, n=m, and,
either r=1and x=—H, orr=0and xk=1—H.

The parameters v, k, o of Dobrushin and Major (1979) are here v=1, k=m
and a=2—-2H,.

The parameters d, n, y, and « in Sinai (1976) are here d=1, n=m, 7, =H, and
o equals 2H, in some contexts and 2H in others.

Finally, note that the processes Z, (¢) are defined as in Taqqu (1978a). They
are normalized. The processes Z,, (t) of Tagqu (1975; 1977) are not normalized.

§2. The Underlying Gaussian Process

We define here the stationary Gaussian process X(s), — oo <s< oo that appears
as the argument of the function G in (1.2). We shall impose conditions on X (s)
which depend on a parameter m. This parameter will be identified in Sect. 5 as
the Hermite rank of G.

Thus, let m=1 be a given integer and set

1
1 -5 —<H,<l. (2.1)

Let L(x) be a slowly varying function at infinity, defined on (0, o), that is
bounded on bounded intervals and let C be a positive constant.

Let e(u), —oo<u<oo, be a measurable function satisfying the following
conditions:

-+ oC

(A1) o?= | e*(u)ydu<oo.

(A2) le(w|=Cufo~L(w
for almost all u>0.

(A3) e(u)~ufo~3L(u)

as u — 0.

(A4) There exists a constant 7 satisfying
0<y<min< H (1 L ) 1-H
w in (1= _
g © 2m)/)’ ©

such that

0
[ le(w e(xy+u)|du=o(x>H=? [?(x)) y*Ho=2=27

as x — oo, uniformly in ye(0, ¢], for a given ¢ >0.
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Finally, define

[eo}

X(s)=é | e(s—&)dB(), —ow<s<w (2.2)

where B is the standard Gaussian white noise measure satisfying EB(4)=0 and
EB?*(A)=|4| for Borel sets A of finite Lebesgue measure |4|. X(s) is thus
Gaussian, stationary, and satisfies EX (s)=0 and EX?(s)=1.

The condition (A1) ensures that the process X(5), —oo<s<oo, is well
defined in [*(P).

(A2) controls the behavior of |e(u)| for small positive u. It is a relatively weak
condition because the behavior of L(u) around the origin can be modified
without affecting the results of the paper.

(A3) ensures that X (s) exhibits a long-range dependence (see relation (2.3)
below).

Since X (s) is expressed as a moving average, its spectral distribution function
is absolutely continuous. If e(u)=0 when u<0, then the moving average be-
comes one-sided, and X(s) is then purely non-deterministic (i.e. regular). In any
case, the condition (A4) ensures that the “forward” contribution of e(u) is
ultimately negligible as the following computation suggests:

R(x)=EX(5) X(s+x)

= [ et x-g e

=£Z~ Toe(u) e(x+u)du

—
X
2

=o0(x*Ho~2[2(x)) + }Oe(xu) e(x(1+u))du

g

because of (A4). An application of Corollary 4.3 below (see Sect. 4), shows that
1 s
R(x)=EX(s) X(s+x)~ (-Z f (uA-u?yHo-2 du) x2Ho=212(x) (2.3)
0" 0

as x —co. Note also that if H,, denotes the Hermite polynomial of index m (refer
to Sect. 5 for a precise definition), then the variance of the integrated process

[ H,(X (s))ds satisfies
0

E (j: Hm(X(s))ds)zzm! jf :j:R"‘(s1 —s,)ds, ds,

=2m! {ds, | R"(y)dy
0 0
1 [e 9] s m x s
=2m! (—5 | (u+u2)H°A7du) {ds|y*"-212"(y)dy
g7 0 0 0
(m!)?

g x2H [2m 24
K m Hy) (x) (2.4)
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as x — oo, with K(m, H,) defined as in (1.6) and H defined as in (1.7). The square
root of expression (2.4) will provide the normalization factor d(x) that enters in
(1.2).

A possible X(s) is the fractional Gaussian noise process, defined in the
following section.

§ 3. An Example: Fractional Gaussian Noise
The Gaussian process Z ,(t), defined in (1.4), is called fractional Brownian motion

and is commonly denoted By, (t). It is self-similar with parameter ;<H,<1.
Using (1.4), we have

BHO(I)=K(1’H0){ f dB(é)g(s—é)H"‘gds+b(dB(€)j(S—é)H°‘§dS} '

0 t
e S L B R P R YN
072 (Fw ¢
with
K(1,Hy)= [ 2ol2Ho=D) |7 (32
‘;’(u_i_uZ)Ho-%du

Recall that By (0)=0, EBy (1)=0, EBy (t)=[t]*"°, and that By, (1) has stationary
increments. Other properties of By, (1) are derived in Mandelbrot and Van Ness
(1968).

Now define the fractional Gaussian noise process as

X(s)y=By, () =By, (s—1), —oo<s<ow (3.3)

This process satisfies the conditions of the preceding section with m=1.
Indeed, it can be expressed as

1 s
X(S)=; | e(s—¢)dB(&) (3.4)
with
0 when u<0
e(uy={ufo-% when 0<u=l1 (3.5
uo-% _(y—1)fo-%  when u>1
and
_ Ho‘%
TR, Hy) (3.6)

o0

o= [ e*(u)du ensures that EX?(s)=1. The kernel e(u), —oo <u< oo, satisfies
0] .

the conditions of the preceding section, because we can write
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e(w)=ufo~# L(u)

when u>0, where
, | O<ugl
L(u) ={” u= G.7)

wrHoyo=% _(y—)Ho-%)  y>1,

L(u) is thus a slowly varying function at infinity, defined on (0, o), bounded on
bounded intervals, and such that

1 Ho—%
lim L(u)= lim u (1 - (1 —;) )=HO—§. (3.9)

The correlation R(x)=EX(s) X(s+x) equals [ e(u)e(x+u)du. The direct
0]
evaluation of this integral for all x=0 is delicate. It is more convenient to use

the fact that X(s) is the increment of By (f). This immediately leads to

R(x)=EBy,(1)(By,(X) = By,(x—1))
=3 {(Ix]+ 1) = 2[x| 2o+ x| — 12 H°}. (3.9)

It is then easy to verify directly that
R(x)~H (2H,—1)x*Ho~2 (3.10)
as x —co. This is consistent with the result (2.3) of the preceding section, because
by (3.8),
1 @ 3
(7 § (u—{—uZ)HO‘idu) x2Ho=2 [2(x)~H,(2H ,— 1) x*Ho=2
g0

as X — 00,

§ 4. Preliminary Results

In this section, we establish several lemmas of a technical nature. We conclude
the section with a theorem about convergence to Z,(t) in [?*(P).

Lemma 4.1, Let
V(x)=x" L(x)

as x — o0, where — 00 < p < o0 and where L(x) is a slowly varying function, defined
on (0, c0) and bounded on bounded intervals. Then'Vy>0, Yu,>0 and Ve>0, Ix,
=X(€) such that the following relations hold for all x>x,:

V(xu)
V(x)

(e—uh)u’~'< <(e+up)u’~? 4.1)

for all ue(0,u,] and,
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V(xu)

(s—ugy)u"”<———v(x)

<(e+ugHut’ (4.2)

Jor all uelu,, ).

Proof. To prove (4.1), note that

Vixu) o L{xu)

V(x) L(x)
:up‘y(xu)VL(xu)
x"L(x)
'L
Since y>0, (x_u_zz(% tends to u' as x — oo, uniformly in ue(0,u,] (De Haan
X

(1970}, p. 21). Therefore for any >0, there is an x,(¢) such that for x> x,(¢)

(xu)’ L(xu)

c—ul<e—u'<
0 x? L(x)

<e+u'<e+ul.

Similarly, to prove (4.2), write

Vixu) . (xu)""L(xu)
V(x) X7 L(x)

(xu)~7L(xu)
x~TL{x)
This concludes the proof. [

and use the fact that tends to u~7 as x — o0, uniformly in uelu,, o).

The following lemma provides useful estimates. First, some notation. Let
Vi(x)=x""2L (x), (4.3)
V,(x)=x""%2L,(x) (4.4)

where +<H,<1 and where L,(x) and L,(x) are slowly varying functions at
infinity, defined on (0, o0} and bounded on bounded intervals.

Let C be a positive constant and let e,(x) and e,(x) be two measurable
functions satisfying

le;(x)| = CV(x) (4.5)
for almost all x, and

e;(x)~ Vi(x) (4.6)
as x—oo, for i=1,2.

Lemma 4.2. Let t>0, 0<a=<t=<f and let e, (x), e,(x) V,(x), V,(x) be defined as
above. Let also 0<y =<t and

O<y<min(H,—3%, 1—H,). (4.7)
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Then for all large enough x, there are positive constants M,, M, and M,
independent of o, B and y such that

VE%T‘HeWWEWU+WMM
<M, y?Ho-2-2 Cj) (u+u?)fo-3-vqy, (4.8)
ST | e s
<M, y2Ho-2+27 5; (u+uP)To 27 dy (49)
and
;@fyriﬁaum%uw+@uu
< M max (y2Ho- 221 y2hio= 2+ 27) (4.10)

Proof. By Lemma 4.1, Vs>0, I x,(e) such that for all x>x,(e),

j le, (xt) e, (x(y +w)| du

f i) Vo (x(y +w)
Vix)  Va(%)

1
Vi) V20 o

S Ce+a)(e+(y+a)) f(”(Y+u))H° “du
< CPe+(21)) y?Ho=2-2 j (u+u2yo—E-74qy
0

because o>t and y <t. The integral converges because H,—3—y>0. Setting M,
= C?*(¢+(2¢t)") proves relation (4.8).
Similarly,

1
75ﬁ7~fmwu%uw+wMu

SCEHE Nt 0+HT) g (u(y +w)™o= 37 du

[ea)
§C2(8+t_y)2 y2H0—2+27 S (u—{—uZ)H“‘%”du
Biy

because 1. The integral converges because H,—1+y<0. Setting M, =C*(¢
+t7%)? proves relation (4.9).
Finally, let

o0 o8]
M3:maX{Ml fu+u?)=reHo3dy M, | (u+u2)”H°‘%du}.
0 0
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It is easy to check that M, < co. Relation (4.10) results from (4.8) and (4.9) with
o= f=t. This proves the lemma. []

Corollary 4.3. For all y>0,

1 o0 w
lim — ——— [ e, (xu) e, (x(y+u) du=y?Ho=2 [ (u+u?)y#o~*du.
roeo V1(%) V(%) ()[ [(xu) ey (x(y +u)) g(

Proof. Relation (4.10) justifies the application of the dominated convergence
theorem:

o]

1 [e 0]
lim ———— (e (xu)ye,(x(y+uw) du= | ufo—*(y+u)fo-* 4y
o Vl(x) Vz(x) g 1( ) 2( (y )) (,f (y )

=22 {(u+u?fo-2du. [
o]

1
Lemma 44. Let m21, 1<p=<m, 1—2~m<H0<1 and

1
3 in<H,—(1—=—,1—Hg;.
0< ,<m1n{ o (l Zm)’ 0}

Then

0 Q

t 1 afls1—s2| p

| ds, jdszfsl—szf(w"‘z‘z”’"{ J (u-!—uz)HO‘i‘Vdu} =o0(1) (4.11)
0

as o —0. Also,

t f @ 14
[ds, jdsz!sl—SZJ(ZHO““Z”'"{ | (u+u2)H°‘3”du}
0 0 Blls1—s2|

:0(ﬂ2H0—~2+2y)

=o(l) (4.12)
as ff—oco.

Proof. We first prove (4.11). Let n=n(«) and assume 0<x <t. Then the left hand
side of (4.11) is bounded above by J,(t, &) +J,(t, &) where

0

i t © »
Ji (e, 1):j ds, j ds,ls; —S2|(2H°*2“27)m l(O,rl)(ISl —5,0) {j‘ (u+u2)30~%—v}
0 0
and
t t i ’
ot O‘):jdsl [dsy|s, —s,|@Ho=2=20m Lo.ny(tsy —521) { | (M-Hzlz)HU_%‘y}
4] 0 0
and where 1,(-) denotes the indicator function of the set A. Let

o0 p
C, :{j(u+u2)H0“%'V} < oo. Then
0
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(s, —s,)2Ho=2=20m s ds,

LGos2c, [
O<s2<s81 <t
O<s1—s2<9

T S1 AR
=2C, [ds, | u@Ho-2720mgy
o 0

_O(”(2H0—2~2y)m+ 1)

as #—0. This tends to 0 since 2H,—-2—-2y)m+1>0
Now,
afn B
St )= Cz{ j (u‘*'“z)Ho—%ﬁy}
0

T i
[ ds; | dsyls;—s,|?He=2=2P" < 0. Then, as ~—0
n

where C, =

0

aln .\
J,(t,0)=0 ( | uH°"2"ydu)”

0

—0 (%)Ho—%—‘/
4

—v>(0. Choosing n = f for example, proves (4.11).

tends to 0 because Hy— %
To prove (4.12), bound the left hand side of (4.12) by C (j (u+u?)fo- T+V)
B/t

which is O(p*Ho=2+27)=0(1) as f— 0, because p=1 and 2H,—2+27y<0
This completes the proof. [

The preceding lemmas yield the following result
1
Lemma 4.5. Let t =20, m>1, 1 ———<H, <1. Suppose that e(u), 0 <u < co satisfies

the conditions (A2) and (A3) of Sect. 2. Let V(x)=x""%*L(x). Then

51 AS2

lim [ ds, jdszhfszdflmfszdéz 1 a,
) e(x( 1 éi))_ - ¢ \Ho—3
(11:—[1 V(x) il=—[_1 (5149 )
“oe(x(s, &) —2\| _
(LH ve L )l

i=1
Proof. Assume 0 <t =<1 without loss of generality. Let

S1AS2

Q(Shsz;x)_—nfszdfl51‘/5:szd£2 j.dé
" oe(x(s; =& O Ho 3
Hi =8 et
{1:—"'[160 6))[’"1 }

1=
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e(xu) T g
{“v«> 1w }

= | du, Iduz... | du,,
0 0 i=1

{H e(x(lslv (;)zmi)_ﬁ 5, —s,| Hi),,w%} _

Let O<a=<t=pf and let 1,(») denote the indicator function of the set 4. Then

moe(xuw) [ Ho-3
{lﬂ Voo LY }

O(sy,5; %) [ duy § du, ... | du,
0 0 0 i=1 =1

AR sl ﬁ(tsl—szwuaﬂo-%}

{ ) le (W) + Z Hl(ﬂ m)(u)+ﬂ Ly, /s](”)}

iz =1

where the set of indices I is a subset of {1,2, ..., m}, and where Z denotes a sum
running over all possible such subsets. 1
To simplify the notation, set

FO(u, y, x)= ‘;E)(C;l))e_(xl(/_)%u_))7
F(Z)(u’ ¥, x): eV(v)(C):'f)) (y-l—u)HO—% ,
F(3)(u’ v, x): uHo‘%f(_X%-)—u)l )

F®(u, y, x) =t~ 3 (y + 0o~
for y>0. Then
Q51,523 %) S A% [sy =355, X) +B(B, [s; = 5,0, X) + Clat, B, Is; — 5,1, x) (4.13)

where

Ao, |5, — 5,1, %)= du,

O!‘=8

du, ... gdum{n FOu;, |5, —s,l, x)}

i=1

[

—_— HMJ;
W"*M oe—g
”‘:l

(0 @) ()},

B(B, sy =5, x)=

du, ]‘Odu2 rdum{ﬁ FOu,, |s, ~s,], x)}
H 72 oo)(u)}

el

N

.
M O g

—~— HMJ;

=~
[\l
-
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and

5B p
Clo, B, sy —s,, x)=1{ du, | du, ... | du,

a o

{ﬁ e(x(lslI;(i;l+ui)) —fll (s, —s2|+ui)H°%}

Toelxw) Top s
{H Ca }

i=1 i=1

We first evaluate

tt
limsup | { A(a, |s; —s,|, x)ds, ds,
00

X— 0

and

tt
limsup | { B(B, [s; —s,|, x)ds, ds,.
00

X— 0
We have

A(OC: lsl _SZL X)

= Z i {jf FU)(M,'SI—SZL x)du}iIl{?Fm(u’lsl_SzL x)du}m_m
0

M
and it follows from Lemma 4.2 that for large enough x, there are constants M o,
M9, j=1,2,3,4, independent of o and of |s, —s,| such that

Ao, {8, —S5,[, %)

affs1—~sal

4 . I
<y z{Mgn;sl—szvﬂoHv | (u+u2)ﬂo~%—vdu}
1

T j= 0
HES!

. {M%’) max (\S1 ~_SZIZHO~ 24 Zv’ ‘51 _52|2H0— 2~ Zy)}mA |1|’
where y is an arbitrary number satisfying
O<y<min{H,—%, 1 —H,}. (4.14)

Since 0=s,,5,<t=<1 and y>0, we have for large x

Ao, sy — 8,1, x)
. afls1 - sz s 11|
SM Y s, —s,|FHo=2720me | (u+u2)H°—7“Vdu}

I 0
1z1

where M >0 is some new constant.
Now restrict the values of y further, by requiring 0<(2H,—-2—-2y)m< —1,
that is, choose 7y such that
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. L
0<y<mln{H0—(1 —ﬁ>,1—HO}. (4.15)

From Lemma 4.4, we obtain that

l1m sup j ds, j"ds2 %, [s, —$,], x) =0(1) (4.16)
as a—0.
Similarly, applying again Lemma 4.2, we get
B(ﬁ: ]Sl —SZL x)
0 I
§M Z isl _32'(2Ho—2~2y)m+47|11{ j‘ (u+u2)Ho——%+vdu}J |
[”131 Blls1—s2|
o 1
MY ls, —szl‘”"“z*“’"l{ | (U—i-uz)H““%”du}
|11121 Hliss=sal

for large enough x, for some new constant M independent of § and |s, —s,| and
for y satisfying (4.15). By Lemma 4.4, we have

t t

lim supjds jds2 (B, Is, —s,], x)=0(1) (4.17)

as fi—w.
t t
We now prove that lim {ds, [ ds, C(e, B, 1s; —s,|, x)=0.
0

X—00 0

Let 0<y=<t We have

ery+u) o e(x(y+u) Lx(y+u)
v T Vo L
e(x(y+u) . . L{x{y+u))
As x— 00, m tends to 1 uniformly in y+ue[o, ), and W— tends

to 1 uniformly in y+ue[o, t+ f]. Thus, Ve>0, Ix,(e) such that for x> x,(¢) and
y+uela, t+ ],

and hence,
m s m + m 5
(== [T eyt [T ORI [ o

(@ +er =) [] O +uo-

i=1
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Thus, for x>x,(g),

t t
(f) ds, (j) ds, Cla, B, |, —S,], x)

t t

<0(g) f ds, | dsyls, —SZI(ZHOZ)"‘{j (u+u?)fo—% du}
b d 0

=0(s) t2Ho—2)m+2

Therefore,

lim jdsljdsz Cla, B, Is, —$,), x)=0. (4.18)

x— 00 0

From (4.13), (4.16), (4.17), (4.18) it follows that

tt

lim supj j Q(sy, 53 x)ds; ds, =0,(1)+0,(1)

X— 0

as «—~0 and B—oo. Since o and § are arbitrary numbers satisfying O<a<t<f,
letting «— 0 and §— o concludes the proof. [

The next lemma involves condition (A4) of Sect. 2.

1
Lemma 4.6. Let t =0, m=1, 1~ﬁ<H0<1. Let e(u), — oo <u< oo be defined as

in Sect. 2 and let V(x)=x"°"% L(x). Then

”{ ) Ie(xu)e(x(lsl—s2|+u))|du}
0 0

Vam(ay
x—»ong

{T le () e(x(|s, — 5, + W) du}mN s, ds, =0,

Proof. Let

9162 [ Allsy 5530 LAl =53l 0+ Blls, —s3l 017~ ds, d,
where

Alls, —s,), %)= fm le(eu) e(x(ls, —55) + ) du
and

Bls, =53hx)= | et (s, =+ )l du.

Now, A(A+By= <A (A"~ 4B" )=2"~1(4"+ AB"~') and by
Hoélder inequality, '

m
I TLLEN .
)m—l

[ABm 1 <(j amy(f B” m—(f Amyn([ Bm Tm
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Therefore,

Tt t i
J(t,x) 271 [ [ A™(|s, —s,, x)ds, d52+2'"*1{j [ A™(|s, ~s,], x)ds, dsz}
00 00

|=

m

tt 1—%
-{jjB’”(lsl—Sz[, x)dsldsz} .
00
By assumption (A4) of Sect. 2,

1 0
A({sl—szl,x)=; { {e(u)e(x[sl—szj+u)[du
=0(V3(x))|s; —s,|?Ho=2727

as x-—o0, uniformly in O<(s, —s,{<t, where

1
0< in{ H —(1—————), 1-H,>.
'y<m1n{ 0 Tm 0}

Using also (4.10) of Lemma 4.2, we get

t ot
J(t, x) S o(V>"(x)) J _[ |s) —s,|He=2=2V" g ds,
00

1

+0(V2(x)){j[° j s, — s, |GHo=2=20m gg dsz};(Vz”‘(x))%“;T

1

tt 1_;
: {f [ max(|s, —s,|2Ho~2=2nm [51—sZI(ZHO‘Z*ZV”"dsldSZ} ,
00

and therefore

. J(t,x)
1 =
S Y2 )

This completes the proof. []

We now introduce, for each m=1, a collection of processes {Y, (z, x), x>0}
and a process Y, ().

1 ‘ o .
Letl— < H <1 andlet e(u) be a function satisfying the conditions of Sect. 2.

For each x>0, define

Y,(6x)=[ds | e(x(s—&,)dB(E,)
41 Em—1
| etxto-enaney. ] etxts—,0)aBE,) 4.19)

By hypothesis on e(u)

=

e*(u)du< oo
(

T e (x(s—2) de =

for all x>0, and therefore Y, (1, x) is well-defined in I?(P) for each x> 0.
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Define also the process

7 (D) (4.20)

Y.(=—r—Z
m( ) K(m, HO) m t

where K(m, H,) and Zm(t) were introduced in Sect. 1. Theorem 3.1 of Tagqu
(1978a), ensures that Y, (¢) is well defined in I*(P).
Now set

V(x)=x"0-%L(x).
Theorem 4.7. For each t =0,

, Y (,x) < )2
lim E |~ -Y. () =
i ( yneg )
Proof. Set Y, (¢, x)=Y,1)(t, x)+ Y{P(1, x), where

t s 31
Yn‘,”(t,X)=£dS [ e(x(s—£))dB(y) | e(x(s—&))dB(E,)

& Em-1

] exls=gaDdBEy) ] el =80 aBE)
and
(0x)=[ ds | elx(s—E) dBE) j; e(x(s—&,)dB(Z,)
- etxts—ean T etets—e i)
Now,

E (Yf/”'("t(’;) B Y’"(‘)Y é‘z{E (Y(Vl')"(( ) ST ))2 (Y'ivz')"((i)x ) }
But

Yo NI o e
E(m_(t’ic)_Ym(r)) = [ ag, | de,.. | g,

()
T (e M g\ :
[fos (15555 = To=em) 11 166

=[ds, [ds, | de, 1] ey | de,

ds,
[(7 e, -0

m

(o)

i=1

By Lemma 4.5, this tends to 0 as x —c0.
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Now let
e(x(s—&,) =e(x(s—¢,)) 1(5, oo)(f V-
Then

E(Y,2(t, x))*

:g ds, g ds, f e(x(s; —&)))e(x(s, —¢,)de,y
&1 Sm—1

felx(s =) ex(s, =) dE, . [ elx(s; — &) elx(s; =) 4L,

—w —

éidslidsz{ }o le(X(51*5))6(X(Sz—é))ld§}

S1 AS2

-{T\e(x(sl -é)e(X(Sré))idﬁ}m
=j ds, jt dsz{ E le(xu)e(x(]s, —sz{—i—u)ldu}
0 0 —

{Tle(xu)e(X(lsl ~5,|+u) du}m_l

—

=o(V*"(x))

as x— oo, by Lemma 4.6. This concludes the proof. []

§ 5. Weak Convergence

Let X(s), — oo <s< o0, be the normalized stationary Gaussian process defined in
Sect. 2. The parameter H, that enters in the definition of X (s) is required to satisfy

1
l—5 <Hy<l (5.1)

where m=1 is an integer.
Introduce the Hermite polynomials

X2 q X2

*2 _*2
H(x)=(=1f e 75¢ 7, q=0,1,...

The first few are Hy(x)=1, H,(x)=x, H,(x)=x>—1, H,(x)=x>—3x.
We first study the convergence of the finite-dimensional distributions of

xt

d—(l;) J 1, (X s

t=0, as x — o0, for arbitrary m= 1.
As normalization factor, we choose

m!
d(x) N;_m—Izm XHL (x) (52)
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as x — o0, where
H=(H,—1)m+1

and where the constant K(m, H,) is defined as in (1.6). This choice ensures that

E (j Hm(X(s))ds>2 =f j mWEX (s,) X (s,))" ds, ds,
0 00
~d?(x) (5.3)

as x— oo (see (2.4)).

Lemma 5.1. Let Y (¢, x) be definéd as in (4.19). Then, for each x>0

xt

T ds 20t 000

where = indicates equality of the finite-dimensional distributions.

Proof. First note that, by McKean (1973) for example,

HAX@»=HMG~fe@—®dB@ﬂ

Em—-1

= f e(s—&,)dB(,) f e(s—&;)dB(y) ... | e(s—¢,)dB(,).

—
Now let ay,a,, ...,a, be p=1 arbitrary constants and let {,,1,,...,£,20. Then

Xt

i 5 X(s))ds—xZ jH (X (xs))ds

=7;x Z ajfds I e(x(s—¢&,))dB(x&y)
0" j-170 ~w
&1 Em-1
- f elx(s—=E)dB(xE,y) ... | e(x(s—E,)dB(xE,)
in the I*(P) sense. Using an argument similar to the one used in the proof of
Theorem 3.1 of Taqqu (1978a) (formally, dB(x f)éx”z dB(¢)), we get

L4 *Li 4 & m! 147
Yoa; | H(X(s)ds=) a;—.x "2 Y,(t;,x)
j=1 "0 j=1 "0
for each x>0. The lemma follows because the a; are arbitrary. []
Theorem 5.2. As x — 0,

d(l 9 xjt H,(X(s)ds=Z,(t)

in the sense of convergence of the finite-dimensional distributions.
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Proof. Let ay,a,,...,a, be arbitrary constants and suppose without loss of
generality that ¢,,¢,,...,1,>0. Then by Lemma 5.1, for each x>0,

1+42
i 4 mlx "2

J;lajd—(x—) g Hm(X(S))dS=j§laj a0 Y, (t;, x).

But by (5.2),

m 1+m

m!x'*2 m!o"K(m, H,) x1*3
o"d(x) o™ m! X" Ho~ 1)+ le(x)
K(m, H)

V™)

as x — 00, where V(x)=x"°"%L(x). Also, by (4.20),
Z,0)=K(m,Hy)Y, (1),

Therefore, as x — 0.

o omix'tz r » Yo%) <
j;l ajm(_x)_ Ym(lj,x)~j§1 aiZm(tj)+K(m7Ho)j§1aj( Vm(x) -~ Ym(tj)).

im 5 3 o, (525, 0))|

Y,(t;, x)
E< V™ (x)

A
=
a%\,
P

. 2
20)
j=1 " j=t1x~w
=0

by Theorem 4.7. This concludes the proof. O

H,(X(s)) is a new process, obtained from the Gaussian process X (s) through a
non-linear transformation. A more general non-linear transformation would lead
to the process G(X(s)). We now choose G to be an arbitrary function satisfying
EG(X(s))=0and EG*(X(s)) < oo, and we study the weak convergence in C[0, 1] of

% 1}: G(X(s)) ds

as x — oo, where d(x) is defined as in (5.2). C[0,1] is the space of continuous
functions on [0, 1] with the sup-norm topology.
Let X denote an N(0, 1) random variable, and as in Taqqu (1975), let

4 ={G:EG(X)=0, EG*(X)< c0}. (5.4)

The Hermite rank of a function G €9 is the index of the first non-zero coefficient
in the expansion of G in Hermite polynomials. Let %,, be the subset of # that
contains all functions with Hermite rank m. Then
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= ( O gt) kJ{qoo’
i=1

where ¢, contains the function 0, and,

Y.0n%;=0
when i+ j
Let Z (q) ) denote the Hermite expansion of G(+)e%,,. Since

H, (X)H,(X)=q,!3

q1,42°

the coefficients J(g) satisfy
J(@=EG(X) H (X),

and the series Z H ,X) converges to G(X) in I? (]R1 ) By

2T

Parserval’s relatlon,

o0 2
EGZ(X)=q;qu(!Q) <

Lemma 5.3. Let Ge%,,. Then as x — o0,

1 ( )

— j GX()ds="2Z (1)

in the sense of convergence of the finite-dimensional distributions.
Proof. Let

GHX ) =G X ()~ (X)) (5.4

Then

xt J(m xt xt
[ GX(s)ds=—= | H,(X(s)+ | G*(X(s))ds.
0 m! 0
Proceeding as in the proof of Corollary 3.1 of Tagqu (1975), one can show that

E(i G*(X(s))ds) §§§|EG*(X(S ) G*(X (s,)|ds, ds,

=o(d?(x)) (5.5)

as x—oo, and therefore the limiting finite-dimensional distributions of
xt 1 xt

L j G(X(s))ds are the same as those of J(m) { H,,(X(s)) ds. But by Theorem

m! d(x)

( )Z (t). This concludes the proof. [

5.2, they are those of
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To establish tightness, we will use

. Lemma 5.4. Let Ge¥,,. Then for large enough x, there exists positive constants C and
0, independent of t, such that, for all t =0,

(d( 9 gG(X(s) ds) ol

Here 0<d<2H—1.
Proof. Suppose without loss of generality that ¢>>0, and let

1 xt 2
0(t,x)=E (%5 J G(x(9) &) 56

By (5.4), (5.5), (5.3) and (5.2),

2 2
00~ E Wk (0 [ Ha o) as)
Jz(m)dz(xt)
TTml 2 (x)
J2(m) (x0)*H " (x1)
TTm Xy

as xt—oo. Thus, Ve>0, I5(e) and a constant C, =C (g, m) such that for all
xt>n(e),

M(xt

0t C, 1 =D

L'(x)

(5.7
Choose now 0< 0 <2H —1 and consider two cases:
i) When xt>#(e), it follows from (5.7) that

(_X,Z)7H 1~ 5L2m(x[) a5
ZH 1— §L2m(x)

ot x)=C,

(xt)”{ 1- 5L2m( )

Since2H—1 6>0, oy 5L2’"()

tends to 1 as x — oo, uniformly in 0=t <1,

and thus, for x large enough, there exists a constant C, >0, independent of 1, such
that

Q(t,x)< C, ",

ii) When xt=<#(e), use (5.6) and the fact that EG*(X(s))=C, < o0, to get
th

<C,——.

Q(ta x)— 3 dz(x)

Since d(x) is asymptotically proportional to x?¥ I""(x) as x — o, there exists for
large enough x, a constant C,>0, such that

x2¢?
4 x2HL2m(x)'

QL x)=C
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But (x#)' ~?<n'~? where § is defined as above. Therefore
x1+5—2H s
LX)SECynt P =g —— '™
Q( ,X)__ 417 LZm(x)
§C5t1+r§

for large enough x, because 1+ —2H <0. This concludes the proof. [
As a consequence of Lemmas 5.3 and 5.4, we obtain

Theorem 5.5. Let Ge%,,. Then as x — w0

d(l ;) } G(X(s))ds=>—(—)Z (®

in the sense of weak convergence in C[0,1].

We now turn to the discrete parameter case.

Let D[0, 1] be the space of functions that are right-continuous and have left
limits, and suppose that D[O0, 1] has the Skorokhod topology. The following
theorem is based on an important result recently obtained by Dobrushin and
Major (1979). :

Theorem 5.6. Let Ge%,,. Suppose that {X,,i=1} is a stationary normalized Gaussian
1

sequence with EX; X, ,~k*#o=2I?(k) as k— o, where 1 ——2~—<H0 <1 and where
m

L(x) is a slowly varying function at infinity, bounded on bounded intervals. Then

1o Ll
am & 0=

in the sense of weak convergence in D[0,1].

27 0

Proof. Dobrushin and Major (1979) have shown that under the assumptions of this
]

theorem, the finite-dimensional distributions of ——- i 2 Z G(X,) converge as
( )

N - 0. In fact, they converge to the finite-dimensional d1str1but10ns of

Z,,(0).

This follows from Theorem 5.5. by specializing { X, i= 1} to a sequence that admits

a weighted average representation consistent with the assumptions of Sect. 2 (see

Taqqu (1978b) for details). It also follows from the identification (in the finite-
J(m)

dimensional distributions sense) of Wz—m(t) with the limit obtained by

Dobrushin and Major (see Theorem 6.3 below). The tightness of the D[0, 1]

1 [Nt]
sequence { i z G(X), N=1,2,. } can be established by suitable modifi-
cations of the proof of Lemma 54. [

See Tagqu (1975) for an alternative proof of this theorem in the cases m=1 and
m=2,
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§ 6. The Wiener-Ito-Dobrushin Representation for Z ().

Z,(t) admits various representations, equivalent in the finite-dimensional distri-
butions sense. B
Consider first the definition of Z,,(t) given in (1.3). The integrand

f ﬁ g'j)H"‘3/21(§j<s)ds
D i

is a symmetric function of £,,...,&,, and therefore one can write

(m Ho)

Z,(0)= f{fﬂ(s— Yo=21(z, <s)ds}dB<é)..dB<z:m) (6.1)

Rm {0 j

where | is the Wiener-Ité multiple integral on R™. See It6 (1951) for a precise
Rm

definition. Heuristically, | denotes integration over R”, disregarding integration
Rm

over the hyperplanes £, =¢;,i=j,i,j=1,2, ..., m. The integral f " is defined through
]Rm

an isometric mapping from the Hilbert space of square integrable functions

[y, ... &) into L2(P).
Let now W and [ be defined as in Sect.4 of Dobrushin (1979). These
Rm

definitions involve a modification of the definition of the Wiener-It6 multiple
integral. W is a Gaussian “white noise” (complex) random spectral measure that
satisfies W(Z Ai)= Y W(d,), W(A)y=W(—4) and EW(4,) W(4,)=|4,n4,]|
i=1 i=1
for Borel sets of RI\{0} that have finite Lebesgue measure |*|. The real and
imaginary parts of W(4) are independent normal random variables with mean 0
and variance 3|4 To define [”. one introduces ,, the real Hilbert space of
]Rm

complex-valued symmetric functions f(4,, ..., 4,) of 4, ..., 4, €R" that are even,
e f(Aes-es A =f (=24, ..., — 4,), and that have a square integrable modulus. The
integral [” is defined through an isometric mapping

]Rm

H, — I2(P") (into)
fHI(f)=H£: s 2y WA ... W(dA,).

P is the probability measure of the space on which W is defined and L*(P") is the
real Hilbert space of real-valued functions that are square integrable with respect to
P”. The mapping is defined in such a way, that heuristically, one disregards
integration over the hyperplanes &, =&, and &;= — &, i=j,1,j=1,2, ..., m. The fact
that both f and W are even ensures that I(f) is a real-valued random variable.

Lemma 6.1. Let A(¢, ..., E,) be a real-valued function in I2(R™) which is invariant
under the permutation of its indices, and let
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Ay ooes A) = 3 )m/zf zZénA(fl,. S )dE L dE

be its Fourier transform. Then

[ A, ... ¢,)dB(E,) ... dB(,) ini: Ay, M) W(dAy) ... W(dA,) (6.2)

it

Proof. Let Yy, ¥y, Y5, ... be a complete orthornormal set of functions in L*(RY).
Then

A s b= Y eV (O (). (6.3)

klnu,kméo

Since A4 is symmetric,
[AE,, ..., ¢)dB(E) ... dB(,)
1
:5’—— Z chq ,,,,, kmwh 11) lpkm(étm)dB((fl) dB(ém)

m! (1, . osim)enm k

1
el X W (€) Vg (E)B(E) . B

(15 s IM)EMmM

2
4
% ..... i Hi (1 618 dBE) H,, ([ 6,(8)dB(Q)) ... H; ([4,(£)dB(E)  (64)

I

by applying Theorem 3.1 of It (1951). Here 7, is the set of all m! permutations of
the indices (1, ..., m), the H s are the Hermite polynomials defined in the preceding
section and the set of functions {y, , ¥,,, ..., ¥, } is identical to the set of functions
{Arso s Pty Doy Oay ooy Py -, By}, there being j, identical functions (denoted
¢,), j, other identical functions (denoted ¢,), ...,j, other identical functions
{denoted ¢,,), with 05j,, ..., J,=m and j, +.. +Jm~m Each index j,, ..., Jj, and
each function ¢, ..., ¢,, depends on ki, k,, ..., k,,.
The Fourier transform A(X,, ..., A,) belongs to A, Usmg (6 3) we obtain

Ay, ..., /lm)=2 v, Q) o W () (6.5)

where J(4)=(2n)~ l/zj"e’“tﬁ(g)df By Parseval’s identity, § W12 ={I?, and hence
{,,k=0,1,2,...} is a complete orthonormal set in .

Consider now " A(4y, ..., 4,) W(dA)) ... W(d4,). It can also be expressed in
terms of one-dimensional integrals. Indeed, starting with (6.5), using formulae (4.14)
and (4.15) of Dobrushin (1979), and proceeding as above, we get

Ay, s A WHdAY) ... W(dA,)
=§k:0k1 i Hy (§ S AW H, ([ (AW AR ... H, ([ $.(H)W(d2))
(6.6)
where the indices j,, ..., j, and the functions ¢y, ..., ¢,, are defined as in (6.4).

To compare (6.4) with (6.6), we note that fpr any s =0, the random vectors (X,
={y(&)dB(&), k=0, 1, ..., s) and (Y={v, () W(dA), k=0,1,...,5) are both
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multivariate normal, with mean O and covariances

EX,X;=[ Y& ¥,(&de =[,()) (D dA=EY, Y,
i,j=0, 1, ..., 5. They are identically distributed, and therefore
f/ A, ..., E)dB(E) ... dB(ém):ij” /I(/ll, v ) W(dAy) ... W(dA,). [

Remark 6.1. Relation (6.2) can be interpretated as Parseval’s identity where the
complex even measure W() is viewed as equivalent (in the finite-dimensional
distribution sense) to the Fourier transform of the real measure B(+). E|W(4)
=E(B(4))> =|4| follows from the I? isometry of the Fourier transform, | ensures
the independence of dB(¢,),...,dB(¢,) and [’ ensures the independence of
W(dA,), ..., W(d2,).

Remark 6.2. Lemma 6.1 also holdsif &, ..., ¢, eRYand 4, ..., 4,,€R”, v=1. In that
case, define A(44, ..., 4,,) as the R™-Fourier transform of 4(£,, ..., £,) and replace
R™ by R™ in (6.2).

Lemma 6.2. Let
Ay, 8= | o) [T (=&)Y *1(¢;<s)ds
— 0 ji=1

where 1 <H,<1 and ¢(s) is any integrable function in R' such that

[ IA@,, ., EPdE, .. dE, < .
RrR™

Let ¢p(A)=@2n)~ 112 T e*s p(E)dE. Then,

f’ Ay, ..., ¢)dB(E,)...dB(£,)
IRm
é(wr%m

4 7 7 |5—Ho
ﬂg)éﬂ@ww+mﬂmm
A EROW(dL,) . W),

Proof. We first evaluate the Fourier transform of A(¢, ..., £,). Some care is needed
because the function u#°~21(u>0) belongs neither to L'(IR!) nor to I*(RY).
Introduce

A Ty T. k=1,...
AT(fl,...,(jm)z{O(fp &) i EI<T, m

otherwise.

. DN
I Ap(Ag, ooy =02r) "2 femt  Ap(E,, ..., E)dE, ... dE,, which belongs to
LYR™)~ L*(IR™), converges, as T— o0, to A(4,, ..., 4,) almost everywhere point-
wise, then, by a classical argument, A(J,, ..., 4,) is almost everywhere equal to
the [*(IR™)-Fourier transform of A(¢4, ..., &,).
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Introduce
b

; [emiyfo=2gy
|/ T a

for 0Zasb<ow, and B,(a, oo)-hmB,l(a b). Since H,>2%, one has

B,(a,b)=

|B,(0, )| <(2m)~ 1/Zjuﬂ‘)‘fclu (2n)~ 1/2(H -H- L By the second mean-value

theorem, for/l=1=0anda>0 B,(a,b)y=(2m)"1/2gHo-% f e""*duwherea<u <band

therefore |B,(a, b)| <2~ Th
ercfore |B,(a, )i_m us
1 1 2
]
Now,
Ap(Ayy .y 2)
1 1251 +
g d e 190 [e-gm e <oig < ndsire
1 —1§:ul . )
=, [ e f P(s) @1t ot i) [] ullo~#1(u;>0)

1(s—T<uj<s+T)dsd’"

Suppose 44, ..., 4, different from zero. Then

VAr(Agsovry Ag)| S TO Igb(s)I ﬁ |B;,(max (0, s—T), max (0, s+ T))| ds

< wonas) 11 g Gtz

j=1 2
is finite and uniformly bounded in T. Thus,
A(Ay, .., A)=1im A(A,,..., 4,)

T

+ 00 m
= [ Mt tig(s) T] lim B, (max (0, s—T), max (0, s+ T))ds

- " 1 -
=127 ¢(A,+...+ 4, e*”"lquV%du},
e o )11;11 {]/E g

where | denotes an improper Riemann integral. After a change of variables,

‘:ls

; oy 17
:ﬁ;;d)(/ll-i— A4 {Mjli—ﬂo j‘ e—lumgnlJuHo_idu}

j V27 o
=127 ¢y ...+ A )H {A[EHo@m)~ 12 (H,—4) C(A)}

-

3 I

where C()=e~ 30" for 150, C(—A)=C(A) and thus |C()| =1 for all 140,
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Applying Lemma 6.1, we get
[ A, ....¢)dB(E))... dB(,)4 ["AQhy, s A W(dAy) ... W(dA,)
m ]Rm

_ (F_(fll/_;_n:?l)mgm VI G+t )
{ﬁ Mjl%"%} CL)W(diy) ... C(A,) W(d4,)

4 (T(Hy~ moo
" (4, Ao A[FHo di,)...W(dJ
(e ) pvama e il [ b wan) .. Wi,

after applying the change of variables formula for Wiener-It6-Dobrushin integrals:
formally, C(4)) W(d/l) W(dJ.;) (see Dobrushin (1979) Proposition 4.2). []

Theorem 6.3. Z (1), defined in (1.3), admits also the following representation

_ ei(7~1+...+/1m)t 1 1 1 Widi i
Z ()=K H, . T Lo W(dA
w00 2K Ho) [ oy et (@A) W)
where
m(H,— 1)+ 1)2m(H,—1)+1) )12
Kl(m,Ho): ( E 0 ) )( ( 1] i 31
m!{2I'(2—2H ) sin (H,—3) =}

Proof. Let p=1and let ay, ..., a, be arbitrary real numbers. Let Z, (1) be defined as
in (1.3). Then by (6.1),

i akzm(tk)
K(m H p e m
z_(l:n’!_g)mjm {kZI akf Hl(s—éj)Ho—%1(§j<s)}dB(§l)...dB(gm)
_K(m, H,)
(m_ f A(Cy, .., &) dB(Ey) ... dB(E,)

where we set

d)(S) = Z akl(o,zk)(s)

and

+ 20 il
A@y, &)= | d() [] (s—&)fo*1(E,<s)ds
— j=1
Naturally, AeI?(IR™). Applying Lemma 6.2, we get
P
Y a Z (t)AK (m, H,) ) V2R Bt i)

{

|zj|%-Ho} W(d2,)... W(d2,),

F=r
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where
K —
K (m Hy)= (m, Ho)(I'(Hy —3))
m! (2my/?
N 4 L 14 eiltk_
Here, )2n ¢p(H)= ) a, [ €*dE= Y q, 5 The constants a, ..., a, being
k=1 0 k=1

arbitrary, we conclude that

_ y gt o+t _ u a
Z, =K (mHy) " ——— (A, [FHo. |4, [FHoW(dA,)... W(d],).
O2Klm Ho) [ 5 T e W) W)

It remains to evaluate the constant K,(m, Hy). Using the expression for
K(m, H,) given in (1.6), we get

K (. Ho) = {m!(m(Ho =D+ D@mH, =1+ HITH, —%))2'"}”2.
2uy"(m!)* (j (u—l—uZ)HO‘%du)
0
But
(FHy,—3)* _ (TH,—P*TG—Hy)

© - 1 -
27.5 j (u+u2)HoA%du 2TEF(H0 Z)F(z ZHO)
0

T
T 2al(2~2H,)sin(Hy— D=

since I'(z) I'(1 - 2) =—.L. Therefore,
sinmz

K, (m H,) :{ (m(H,— 1)+ 1)2m(H, — 1) +1) }1,2'

m {21 (2—2H ) sin (H, — ) n}™

This concludes the proof. [J

Acknowledgement. T would like to thank P. Major for his useful suggestions about this last section.
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In the appendix of that paper, results of this paper and of Dobrushin and Major (1979) are

combined to show that Theorem 5.5 holds under weaker conditions on X (s). A multivariate version
of the theorem is stated.

Statistical techniques for detecting self-similarity and estimating the self-similarity parameter are

discussed in

Mandelbrot, B.B., Taqqu, M.S.: Robust R/S analysis of long-run serial correlation. IBM
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