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Summary. Let {X(s), - ~ < s < o o }  be a normalized stationary Gaussian 
process with a long-range correlation. The weak limit in C[0, 1] of the 

1 xt  
integrated process Zx(t ) =~x) ! G(X(s))ds, x---, o% is investigated. Here d(x) 

=xnL(x) with � 8 9  1 and L(x) is a slowly varying function at infinity. The 
function G satisfies EG(X(s))=O, EG2(X(s))< oo and has arbitrary Hermite 
rank m > l .  (The Hermite rank of G is the index of the first non-zero 
coefficient in the expansion of G in Hermite polynomials.) It is shown that 
Z~(t) converges for all m>  1 to some process Z',,(t) that depends essentially 
on m. The limiting process Zm(t ) is characterized through various repre- 
sentations involving multiple It6 integrals. These representations are all 
equivalent in the finite-dimensional distributions sense. The processes Z',,(t) 
are non-Gaussian when m>2.  They are self-similar, that is, Z,,(at) and 
aUZ, n(t) have the same finite-dimensional distributions for all a > 0. 

w 1. Introduction 

Self-similar processes have recently attracted the attention of mathematicians 
such as Sinai (1976) and Dobrushin (1979), and physicists such as Jona-Lasinio 
(1977), because of their relevance to the renormalization group approach in 
physics. Self-similar processes are also of interest in hydrology where they 
account for the so-called "Hurst  effect". See Jona-Lasinio (1977) for a review of 
the physics literature, and Lawrance and Kottegoda (1977) for a review of the 
literature in hydrology. 

Dobrushin (1979) has introduced a general framework for the study of 
stationary self-similar random fields. They are defined as generalized random 
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functions on the Schwarz space S(IR *) of test functions or on some subset 
thereof. In some cases, the domain of definition of these fields can be extended 
to include indicator functions of rectangles in IR ~, of intervals when v = 1. In the 
latter case, the self-similar random fields become self-similar stochastic processes 
with stationary increments. Stochastic processes of this type are central to this 
paper. 

Definition 1.1. The stochastic process {Z(t), - oo < t <  o0} is self-similar with 
parameter H, if it satisfies the scaling condition 

Z(at)&anZ(t), a>O, (1.1) 

where ~ denotes equality of the finite-dimensional distributions. 
For instance, Brownian motion is self-similar with parameter H=�89 and 

1 
more generally, a stable process is self-similar with parameter H = - ,  0 < c~ < 2. In 

such examples, the increments Z(t+l) -Z( t )  are independent over disjoint 
intervals. But there are also self-similar processes whose increments exhibit a 
long-range dependence. 

Indeed, if � 8 9  1, and if Z(t) has stationary increments and satisfies Z(0) 
=0, EZ(t)=O, EZ2(1)=I,  then, necessarily, EZ2(t)=ltl 2~, 

EZ(tl) Z(t2) =�89 {Itll 2~ + [tNI 2H - I t  1 - t2l 2//} 

and thus, the correlations of the increments Z(t+ 1)-Z(t)  decrease slowly to 
zero, 

E(Z(t+l)_Z(t))(Z(s+t+l)_Z(s+t))~H(2H_l)sZn 2 

as the lag s tends to infinity (ak~b k means ak/bk~l as k~oo).  This slow 
decrease of the correlations is an expression of the long-range dependence of the 
increments. The Gaussian fractional Brownian motion (see Mandelbrot and 
Van Ness (1968)) and the non-Gaussian Rosenblatt process (see Taqqu (1975)) 
are two examples of self-similar processes whose increments exhibit a long-range 
dependence. More examples can be found in Dobrushin (1979). 

There are two important open problems concerning self-similar processes: 

1) the characterization of all self-similar processes. 

2) given a self-similar processes, find its domain of attraction. 

Dobrushin (1979) deals directly with the first problem. Davydov (1971), 
Taqqu (1975), and recently Dobrushin and Major (1979), characterized sta- 
tionary sequences of random variables whose normalized sums converge weakly 
to self-similar processes. 

In this paper, we consider a continuous version of the problem attacked by 
Dobrushin and Major (1979). We introduce the integrated process 

Zx(t) = ~ G(X(s))ds, x>O (1.2) 
o 
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and prove, using a time-indexed representation for Zx(t), that, as x---,oe, Zx(t) 
converges weakly in C[0, 1] to a self-similar process. C[0, 1] denotes the space 
of continuous functions on [0, 1] with the sup-norm topology. The function G 
satisfies EG(X(s))=O and EGZ(X(s))<oo and { X ( s ) , - o o < s < o o }  is a con- 
tinuous parameter, stationary, normalized Gaussian process, exhibiting a long- 
range dependence (see the following section for precise assumptions on X(s)). 

The normalization factor d(x) is chosen such d2(x)~E G(x(s))ds as x ~ .  

Because of the strong dependence, Zx(t ) does not converge to Brownian motion. 
The weak limit Zx(t ) depends on the Hermite rank m of G, that is, on the first 
non-zero index in the expansion of G in Hermite polynomials. 

We prove here that Zx(t ) converges weakly for all m>  1. The limiting process 
Zm(t), which depends on the Hermite rank m, can be represented as 

2~(t)=K(m, Ho) dB(~) ~ dB(~2).., y dB(~m) 
- c o  - o o  

that is, 

Zm(t)=K(m, Ho) dB(~l) ,[ dB(~2)... ~ dB(~) (s-~z)u~ 
- - ~  - o o  0 i = l  

+SdB(~,) ~ dB(~2)... ~ dB(~m) (s-~z)u~ (1.4) 
0 - - ~  - - c o  31 i = 1  

In (1.3) and (1.4), B represents the standard real-valued Gaussian white noise 
measure, 

1 
1 -~mm <Ho < 1, (1.5) 

is a parameter, and 

m!(m(H o - 1) + 1)(2m(H o - 1) + 1) / 1/2 
K(m, Ho)=. 

o o  m 

_{rn !(m(H o - ~ ( H ~ H o ) o ) ~  + 1)(2 m(H o - 1) + 1)(F(~ - Ho))m~ /2 (1.6) 

is a normalization coefficient ensuring EZ~(1)= l. 
The representation (1.4) of the process Zm(t), m> 1 was introduced in Taqqu 

(1978a). The - ' Z,,(t) s belong to L2(p), the Hilbert space of functions that are 
square integrable with respect to P, P denoting the measure of the underlying 
probability space supporting B. The Zm(t)'s have stationary increments and they 
satisfy Zm(0)=0, EZra(t)=0 and EZam(t)=[t] 2u. They are non-Gaussian when 
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m>2. Explicit formulas for their moments can be found in Theorem 3.1 of 
Taqqu (1978a) 1' 2. These moments may not necessarily characterize a unique 
distribution in the case m> 3, and therefore the method followed in this paper 
avoids the use of moments higher than 2. 

The processes Zm(t ) are self-similar with parameter 

U : m ( U o -  1) + 1, (1.7) 

and since 1 - 2 ~ < H o < l ,  the parameter H satisfies 

� 8 9  (1.8) 

for all m ~ l .  21( 0 is fractional Brownian motion and Z2(t ) is the Rosenblatt 
process. 1 tm]. 

By specializing our theorems to the discrete parameter case - , /=d~G(Xi ) '  

we recover some of the results obtained by Dobrushin and Major (1979). 
Dobrushin and Major work in the spectral domain and exploit the fact that the 
spectral measure of the underlying Gaussian sequence has bounded support. 
The limiting process that- they obtain is characterized through a spectral 
representation, of a type introduced by Dobrushin (1979) in his Theorem 6.3. 
That representation is shown in Sect. 6 to be equivalent to (1.3). 

Assumptions on X(s) are listed in Sect. 2. The fractional Gaussian noise 
process is introduced in Sect. 3 as an example of a possible X(s). Section 4 
contains preliminary lemmas. The main results about weak convergence are 
found in Sect. 5. Section 6 contains various equivalent representations for Z,,(t). 

Some Remarks on the Notation 

The three fundamental parameters are m, H o and H. m>  1 is the Hermite rank, 
H0, which is required to satisfy (1.5), involves the underlying Gaussian process 
X(s), and H, is the self-similarity parameter of the limiting self-similar process. 
m, H o and H are related through (1.7) and one always has � 8 9  H and H o 
are identical when m = 1. 

We now relate these parameters to those used in other papers. 
The parameter D in Taqqu (1975; 1977; 1978a) is here D = 2 - 2 H  o. 

1 A more specific evaluation of some of the moments  can be found in Taqqu (1977), p. 228, after 
setting D = 2 - 2 H  o and 

EZ,,(tl)Z,,(tz)...Zm(tp)=#~l ~ )  

2 Errata. In the statement of Theorem 3.1 of Taqqu (1978a), the right hand side of C(m, D) should 
be multiplied by (m!) 1/2 and the right hand  side of K should be replaced by its square root. Also, line 
9, p. 62, should read "rn[ t-mD+2/C2(m, D)<  oC'. The constant C(m, D) in that pape r is identical to 
our K(m, Ho) with D = 2 - 2 H  o 
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The parameters v, n, r and ~ in Dobrushin (1979) are here v = l ,  n=m, and, 
either r = l  and K = - H ,  or r = 0  and K = I - H .  

The parameters v, k, c~ of Dobrushin and Major (1979) are here v = l ,  k = m  
and ~ = 2 - 2 H  o. 

The parameters d, n, 7, and ~ in Sina~ (1976) are here d = l ,  n=m, 7 ,=H,  and 
c~ equals 2H 0 in some contexts and 2H in others. 

Finally, note that the processes Zm(t) are defined as in Taqqu (1978a). They 
are normalized. The processes Zm(t) of Taqqu (1975; 1977) are not normalized. 

w 2. The Underlying Gaussian Process 

We define here the stationary Gaussian process X(s), - oo < s < Go that appears 
as the argument of the function G in (1.2). We shall impose conditions on X(s) 
which depend on a parameter m. This parameter will be identified in Sect. 5 as 
the Hermite rank of G. 

Thus, let m>  1 be a given integer and set 

1 - 2 < H o < l .  (2.1) 

Let L(x) be a slowly varying function at infinity, defined on (0, oo), that is 
bounded on bounded intervals and let C be a positive constant. 

Let e(u), - o o < u < o o ,  be a measurable function satisfying the following 
conditions: 

q-co 

(A1) a 2= ~ e2(u)du<oo. 
- a o  

(a2) le(u)l< CuH~ 

for almost all u > 0. 

(A3) e(u)~u~~ 

a s  u --+ o o .  

(A4) There exists a constant 7 satisfying 

0<  7 <rain { H o -  ( 1 - 2 ~ ) ,  1 - H o  } 

such that 

0 

]e(u) e(x y + u)l du=o(x2H~ 2 L2(x)) Y 2H~ 2- 2~ 
- a o  

as x--, ~ ,  uniformly in ye(0, t~, for a given t>0.  
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Finally, define 

X(s): I- ~ e(s-{)dB({), -oo<s<oo (2.2) 
(7" --oo 

where B is the standard Gaussian white noise measure satisfying EB(A)=0 and 
EBZ(A)=IAI for Borel sets A of finite Lebesgue measure IAI. X(s) is thus 
Gaussian, stationary, and satisfies EX(s)=0 and EXZ(s)= 1. 

The condition (A1) ensures that the process X(s), - o o < s < ~ ,  is well 
defined in U(P). 

(A2) controls the behavior of le(u)[ for small positive u. It is a relatively weak 
condition because the behavior of L(u) around the origin can be modified 
without affecting the results of the paper. 

(A3) ensures that X(s) exhibits a long-range dependence (see relation (2.3) 
below). 

Since X(s) is expressed as a moving average, its spectral distribution function 
is absolutely continuous. If e(u)=O when u<0,  then the moving average be- 
comes one-sided, and X(s) is then purely non-deterministic (i.e. regular). In any 
case, the condition (A4) ensures that the "forward" contribution of e(u) is 
ultimately negligible as the following computation suggests: 

R(x)=EX(s)X(s+x) 
1 

_S e(s-  4) e(s + x - {) d~ 

1+oo 
e(u)e(x+u)du 

- o o  
oo 

= o(x 2H~ L2(x)) + fig ! e(xu) e(x(l + u)) du 

because of (A4). An application of Corollary 4.3 below (see Sect. 4), shows that 

1 ~(u+u2)Ho_~d u x2Ho_2L2(x ) (2.3) R ( x ) : E X ( s ) X ( s + x ) ~  o 

as x ~ oo. Note also that if H m denotes the Hermite polynomial of index m (refer 
to Sect. 5 for a precise definition), then the variance of the integrated process 
x 

H,,(X (s)) ds satisfies 
0 

E Hm(X(s))ds = m l j  R"(sl-s2)dslds 2 
O 0  

52 

=2m1 i d s  2 ~ Rm(y)dY 
o o 

(m !)2 Ho) x zn L2m(x) (2.4) 
o-2mK2(m, 
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as x--+ 0% with K(m, Ho) defined as in (1.6) and H defined as in (1.7). The square 
root of expression (2.4) will provide the normalization factor d(x) that enters in 
(1.2). 

A possible X(s) is the fractional Gaussian noise process, defined in the 
following section. 

w 3. An Example: Fractional Gaussian Noise 

The Gaussian process Z' 1 (t), defined in (1.4), is called fractional Brownian motion 
and is commonly denoted BHo(t ). It is self-similar with parameter �89  o <1. 
Using (1.4), we have 

Br, o(t)=K(1,~o) dB(~) (s--Sl~~ (s--4) Ho-~& 
- o o r 

K(1, Ho) Uo- ~ ~ 4)Ho- 
- Ho _�89 _ d B ( 4 ) ( ( t -  4) _ ( _  ~ )uo-  7) + o j" d B ( ~ ) ( t -  ,(3.1) 

with 

K(1, Ho)={o Ho(2Ho_l) )1/2. 

\ y (u + ue)I~o- ~ d. 
0 

(3.2) 

Recall that Bno(O ) = O, EBno(t ) = O, EBno(t ) = It] 2H~ and that Buo (t) has stationary 
increments. Other properties of BlJo(t ) are derived in Mandelbrot and Van Ness 
(1968). 

Now define the fractional Gaussian noise process as 

X(s) =BHo(S ) -Bso(s-  1), - ~ <s  < oo (3.3) 

This process satisfies the conditions of the preceding section with m = l .  
Indeed, it can be expressed as 

X(s) =1- i e ( s - ~ ) d B ( ~ )  (3.4) 
(7 - -oo  

with 

l 0 when u <0  

e(u)= u H~ when 0 < u < l  

[ u / f ~  u ~  when u > l  
and 

(3.5) 

H o - � 8 9  
0- K(1, Ho ). (3.6) 

co 

0 -2= ~ eZ(u)du ensures that Exe(s)=I. The kernel e(u), - c ~ < u < o o ,  satisfies 
0 

the conditions of the preceding section, because we can write 



6O 

e(u)=u H~ ~ L(u) 

when u > 0, where 

~u, 0 < u <= 1 
L(u) (3.7) 

u~-U~176 -1)~~ u > l .  

L(u) is thus a slowly varying function at infinity, defined on (0, c~), bounded on 
bounded intervals, and such that 

( ( lim L(u)= lim u 1 -  1 - = H  o- �89 (3.8) 
u ~ o o  U ~ o D  

The correlation R(x) =EX(s)  X(s  +x)  equals j e(u) e(x + u) du. The direct 
o 

evaluation of this integral for all x >  0 is delicate. It is more convenient to use 
the fact that X(s) is the increment of BHo(t ). This immediately leads to 

R (x) = EBno(1)(Bi~o(x ) - B u o ( x -  1)) 

=�89 {(Ixl + 1) 2H~ -21xl2/~~ + ]ix[- l[2n~ (3.9) 

It is then easy to verify directly that 

R(x)  ~ Ho(2H o -  1) x 2~/~ 2 (3.10) 

as x --+ oo. This is consistent with the result (2.3) of the preceding section, because 
by (3.8), 

) 1 ~(u+u2)t fo_~du xZHo_2L2(x)~Ho(2Ho__I)x2Ho_ 2 
~ o  

a s  X ----~ 00.  

M.S.  T a q q u  

w 4. Preliminary Results 

In this section, we establish several lemmas of a technical nature. We conclude 
the section with a theorem about convergence to Zm(t ) in L2(p). 

Lemma 4.1. Let  

V(x) = x ~ L(x) 

as x ~ oo, where - oo < p < oo and where L(x) is a slowly varying function, defined 
on (0, oo) and bounded on bounded intervals. Then'VT>0, Vuo>0 and Vs>0, 3x o 
=Xo(e ) such that the following relations hold for all x >xo:  

V(xu) ~ 
(e - u~) u ~  -~ ~ < ta + Uo) u s-v (4.1) 

for all uc(O, Uo] and, 



Convergence of Integrated Processes of Arbitrary Hermite Rank 

(~-Uo~) u"+ V(xu) '<  v~-<(~+.o ' )U'+ '  

for all ue[Uo, oo). 

Proof To prove (4.1), note that 

V ( x  u) = u ~ L ( x  u) 

v(x) L(x) 
= u p-7 (x u) ~ L(x u) 

x 'L(x)  

61 

(4.2) 

(xu)~L(xu) 
Since ~/>0, tends to u~ as x--oo, uniformly in ue(O, uo] (De Haan 

x~'L(x) 
(1970), p. 21). Therefore for any e>0, there is an x0(e ) such that for x>x0(e ) 

(xu)VL(xu) 
~-U~o <~-u~ < <~ +uT <e +u~ o. 

x~L(x) 

Similarly, to prove (4.2), write 

V (x u) = up+, ~ (x . ) -  ' L(xu) 

v(x) x-'L(x) 

and use the fact that (xu)-VL(xu) tends to u -v as x ~ o o ,  uniformly in uU[Uo, oo). 
x-VL(x) 

This concludes the proof. [] 

The following lemma provides useful estimates. First, some notation. Let 

VI (x) = xH~ ~ Li  (x), (4.3) 

V2(x ) =xlq~ (4.4) 

where l < H o < l  and where Ll(x  ) and L2(x ) are slowly varying functions at 
infinity, defined on (0, oo) and bounded on bounded intervals. 

Let C be a positive constant and let e~(x) and e2(x ) be two measurable 
functions satisfying 

]ei(x)l < C V~(x) (4.5) 

for almost all x, and 

ei(x) ~ Vi(x) (4.6) 

as x ~ o o ,  for i=1,2.  

Lemma 4.2. Let t>0 ,  O<7<-t<-fi and let el(x), ez(x ) VI(X), V2(x ) be defined as 
above. Let also 0 < y N t and 

H i 0 < 7 < m i n ( o - 3 , 1 - H o ) .  (4.7) 
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Then for all large enough x, there are positive constants M~, M z and M3, 
independent of ~, fi and ~ such that 

1 i ]el(xu)e2(x(y+u))idu 
V,(x) v~ (x) o 

~ M l y  2H~ 5 (uq-u2)lt~ 
0 

1 ~ lel(xu)e2(x(y+u))]d u 
vl(x) v~(x) p 

~M2y2/-/o-2+2y }~ (u+u2)no-}+~du 
fl/~ 

and 

(4.8) 

(4.9) 

1 ~ lel(xu)ez(x(y+u))ld u 
V~(x) V~(x) o 

< M 3 max (y2~lo- 2- 2~, y211o- 2+ 2~,). 

Proof By Lemma 4.1, ~/e > O, ~ xo(g ) such that for all x >Xo(e), 

(4.1o) 

1 
j ]el(xu ) e2(x(y + u)) I du 

Vl (x) G (x) o 

f ~ G(xu) G(x(y+u)) du < C 2 

v~ (x) G (x) 

< C2(e+ ~)(e +(Y + ~) ~) i (u(y +u)) ~ --'~ ~du 
0 

=/y 
<C2(e+(2t)~)y 2~~ ~ (u+u2)U~ 

0 

1 2> because ~ > t  and y< t .  The integral converges because H o - ~ -  2 0. Setting M z 
= C2(8 +(2t) y) proves relation (4.8), 

Similarly, 

1 ~ [el(xu)ez(x(y+u))ld u 
V~(x) W~(x) 

o9 

_--- c2(~+P-~) (~+(y+D 0 S (u(y+u))"o-~+~du 
B 

<C2(e +t-~)2y 2~~ ~ (u+ue)~4~ du 
fl/Y 

because fi> t. The integral converges because H o - 1 + 7 < 0. Setting M e = C2(e 
+ t-y)2 proves relation (4,9). 

Finally, let 

M 3 = m a x  M l ~(u+u2)-~+H~ (u+uay+no--~du . 
0 0 
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It is easy to check that M 3 < oo. Relation (4.10) results from (4.8) and (4.9) with 
c~ = fi = t. This proves the lemma. [] 

Corollary 4.3. For all y > O, 

oO 

1 el(xu)e2(x(y+u))du=y2Ho_ 2 ~ (u+u2)Ho_kdu" 
lim l/l(x) V 2 (x) o o 

x ~ o 0  

Proof Relation (4.10) justifies the application of the dominated convergence 
theorem: 

CO 

1 el(xu)e2(x(y+u))du = ~ uUo_}(y+u)Ho_}d u 
lim 1/1 (x) V 2 (x) o o X + o 0  

co 

=y2Ho-2 5(U+u2)Ho--} du. 
0 

1 
Lemma 4.4. Let re>l,  l <p<m,  1 - ~ m < H o < l  and 

Then 

0 0 

as ~--+0. Also, 

i d s 1 } d s 2 , s l - s 2 , ( 2 H o - 2 + 2 y ) m t f ( u + u 2 ) l l o - } + T d u }  p 
o o k~/l~ -s21 

: O(/~2H0-- 2+ 2Y) 

=O(1) 

(4.11) 

(4.12) 

as fl-+ oo. 

Proof We first prove (4.11). Let t/=t/(c0 and assume 0 < t / < t .  Then the left hand 
side of (4.11) is bounded above by J~(t, c0+J2(t , e) where 

Jl(t, c~)= 5 ds a ~ ds2[s 1 --$2[ (2H~ l(o,~)(]s 1 -se t  ) (U-]- H2) H~ 
0 0 

and 

t t (~/q ]p  

J2(t, ~) = ~o < o~ ds2 ISx-s2f~2"~ 2 2~'~ 1" "(f'~-'2Jl ~ ! (u + . 2 ) . o . ,  ) 
and where la(" ) denotes the indicator function of the set A. Let 

C1= u+u ; )  u~ <oo. Then 
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Jl(t,c~)~ 2 c ,  ~ f ($1--S2) (2I-I~ 
0 < $ 2 < 8 1  < t  
0 < S l - - g 2  < t /  

=-_2Cl i dsl Slinu(2Ho 2 2y)mdl 3 
o o 

= O(r/(2 ~ o -  2 -  2 ~ m +  1) 

as ~1-~0. This tends to 0 since ( 2 H o - 2 - 2 ~ ) m + l  >0. 
N o w ,  

( ~/n }p 

where C 2 -  ds~ j ds 2Is t -s21 (2n~ < 00. Then, as 40,  
o o t/ 

J2(t, oO=O u H~ -~--~du p 
\0  

tends to 0 because Ho- �89  Choosing t / = l ~  for example, proves (4.11). 

To prove (4.12), bound the left hand side of (4.12) by C 2 (u+u2)/~~ 
~lt 

which is O(fi2H~ as fl--? oo, because p > l  and 2 H o - 2 + 2 7 < 0 .  
This completes the proof. [] 

The preceding lemmas yield the following result. 

1 
Lemma 4.5. Let t > O, m >= 1, 1 - - - <  H o < 1. Suppose that e(u), 0 < u < oo satisfies 

2m 
the conditions (A2) and (A3) of Sect. 2. Let V(x)=x  H~ ~ L(x). Then 

t t S1 AS2  SI AS2  $1 AS2 

lim ~ds l~ds  2 ~ dr ~ dr S dCr~ 
X ~ C O 0  0 --Ct3 --CO --CO 

m r n  

Proof Assume 0 < t < 1 without loss of generality. Let 

81 AS2 $1 AS2  SI. AS2  

Q(sl, s2;x)= f dr S dr 
- -o0  - -cO - - o 9  

"{ f i  1 V(X) i=l~I (s2- ~i)n~ ~ } 1  
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0 0 "'" 0 i = l  V(X)  i = l  

i= l V(x) i :  1 

Let 0 < c~ < t < fl and let 1 A (U) denote the indicator function of the set A. Then 

~ oo f m  e(xui)~]Ui~O_1 } 
9(&,s2;x)< du~ du2... ~ du,, [I V(x) 

0 0 0 I i = l  i=1  

"{ ~r I-Ii(0'~)(Ui) + i ~ I  El iclFll(fl'~)(Ui)+ i=1~1 1[~, flj(Ui)} 
II] >-> 1 Itl > 

where the set of indices I is a subset of {1, 2 . . . .  , m}, and where ~ denotes a sum 
running over all possible such subsets, r 

To simplify the notation, set 

, [e(xu) e(x(y+u)) , 

e{xu), u) .o_~ ' F(2)(u, y, x) = ~ (Y t 

f(3)(u, y, x) = u I~~ e(x(y+U))v(x) ' 

F(4)(U, y, X ) - -  H o - }  - u ( y  + u ) / ~ ~  

for y > 0. Then 

Q (&, s 2 ; x) < A (G ]& - s2 [, x) + B(fi, IS 1 - -  S 2 I, X) -H C(~,/~, 1S1 - -  s21 , x) (4.13) 

where 

14(0~, IS1--$21,  X) ~--- ! dill ! du2 " " !  dum U1F(J)(gD Is1 - s 2 l ,  x )  
1=1 i 

�9 { Z I-B(o,~)("i)}, I i~I 
II1 _> 1 

B(fl, lsl-s2J, x)= ~ dul du2.., du m f(J)(ui,[Sl-S2l, x) 
j = i  0 0 i 

�9 { Y I I  1{~, ~)(u,)}, I i~I 
IXl > 1 
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and 

C(~, f l , [ sa-s2 l ,  x ) = ~ d u l ~ d u 2 . . ,  du,. V(x)  
~ i i= l  

( ,, e(x([s 1-821-}-Ui) ) } 
'ti=~I1 - g ~  i=IH (IS1 -S21"~-bli)H~ ~ " 

We first evaluate 

t t 
lim sup j j A(e, Is 1 - s2i, x) ds 1 as 2 

x-*~ 0 0 

and 

t t 
lira sup j J B(fl, Is i - s21 , x) ds 1 ds 2. 

x~oo 0 0 

We have 

A(~, is 1 - s2 l  , x) 

?{i = ~, ~= FU)(u, Js i - s2I ,  x) du F~ l s i - s 2 j ,  x )du  
I j 1 

and it follows from L e m m a  4.2 that  for large enough x, there are constants My  ), 
M ~ j =  1, 2, 3, 4, independent of c~ and of [ s z - s  z ] such that 

A(~, Is1 -sz[, x) 

I j = i L  o 
Iq>__i 
{ M ~ ) m a x ( I s l  s 21%-2+2v ISl_S21ZHo-2-2z,)}m-Ifl, 

where ? is an arbitrary number  satisfying 

0 < ?  < m i n  {Ho- �89  1 - H o } .  

Since 0 < sl, s~ < t_< 1 and 7 > 0, we have for large x 

(4.14) 

A(~, Is 1 -se] ,  x) 
�9 (=~Is1 - s21 )1II 

< M  ~ Is 1 s I (2H~ 2 - 2 v ) m . J  f (U+u2)Ho-}o?du 
jq __> 1 

where M > 0 is some new constant�9 
Now restrict the values of ? further, by requiring 0 < ( 2 H 0 - 2 - 2 ? ) m < -  l, 

that  is, choose 7 such that  
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From Lemma 4.4, we obtain that 

(4.15) 

limsupidslids2A(o~,tSl-S21, x)=o(1) 
x-,az 0 0 

(4.16) 

as cz ---* O. 

Similarly, applying again Lemma 4.2, we get 

B(/3, Is: -s2t, x) 

_-<M ~ Is: -s21 (2~~ (u+u2)~~ ? lip 
I [fl/[s:-sz[ 

V l > l  

_<M ~ ]s 1 -s21 ( 2 H ~  (U+U2) H~ 
1 ~/Is~-s2l 

I11=>l 

for large enough x, for some new constant M independent of fi and [s t -s2[  and 
for Y satisfying (4.15). By Lemma 4.4, we have 

t 

lim sup ~ ds 1 i ds2 B(~, Is 1 -s21 , x) = o(1) (4.17) 
x--co 0 0 

a s  f l - +  oo .  

We now prove that lim ds 1 .[ ds 2 C(c~, ~, Is 1-sgl,x)=O. 
x - - c o O  0 

Let O<y<t. We have 

e(x(y + u)) _ ( y  + u)nO_ ~ e(x(y + u)) L_ (x(y + u)) 
V(x) V(x(y+u)) C(x) 

c(x(y + u)) 
e(x(y+u)) tends to 1 uniformly in y+ue[e, oo), and tends As x ~ oo, V (x(y + u)) L(x) 

to I uniformly in y+ue[~, t+fl]. Thus, re>O,  3xo(e ) such that for x>xo(e) and 
y+u~[~, t+fl], 

( 1 - e ) ( y + u )  H~ <eGVv(x)U))Yr"+ <(1 + s)(y+u) ~~ 

and hence, 

( (1-e)  '~-  1 ) f i  (y+ui) ~I~ <-i01 e(x(y+ui)) f i  
i=  I V ( X )  (Y ~- gi ) / /~  - -~ - i = 1  

____((1 +~) ' -  1) leI (y+u,) Ho-~. 
i = 1  
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Thus, for X>Xo(a ), 

i dsl i ds2 C(o:,fl, ISl-S2l, x) 
0 0 

= 0 ( ~ )  t ( 2 H ~  -- 2 ) m  + 2 

Therefore, 

lira i dSl i ds2 C(~ lsl-s2[,x)=O. (4.18) 
x ~ o o  0 0 

From (4.13), (4.16), (4.17), (4.18) it follows that 

t t 

lim sup ~ ~ Q(S1, S2; X) ds 1 ds 2 = o~(1) + o8(1 ) 
x ~ o v  0 0 

as e --+ 0 and fl ~ oo. Since e and fl are arbitrary numbers  satisfying 0 < c~ __< t < fi, 
letting c~--+ 0 and fi ~ oo concludes the proof. []  

The next lemma involves condit ion (A4) of Sect. 2. 

_ 1 < Ho < 1. Let e(u), - ~ < u < oo be defined as L e m m a  4.6. Let t > O, re>l,  1 2m 

in Sect. 2 and let V (x)= x~~ ~ L(x). Then 

Ji 2 ~ 2 ~  ! o i [e(xu)e(x(Isl--S2 [+u))ldu 

�9 [e(xu) e(x([s 1 - s2 l  + u))l du ds 1 ds 2 = 0 ,  

Proof Let 

t t 

a(t, x)= ~ ~ A([s 1 -Szl, x) {A(Is 1 -s2[, x)+ B(Is 1 -s2l, x)} ~-1 ds 1 ds 2 
O 0  

where 

0 

A(]Sl-S21, x ) :  
- o o  

le(xu) e(x(Is 1 - s21 + u))[ du 

and 

co 

B(ls ,  -Sa[,  x ) =  ~ ]e(xu)e(x( ls  1 - s  21 § du. 
0 

Now, A(A+B)m-~<A2~- I (Am-I+Bm-1)=2m-I (Am+ABm-1)  
HSlder  inequality, 

IAB'~-I<(fAm)m(I B m-,) __ ~Am);(fB ,.) ,~ 

and by 
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Therefore, 
1 

J(t 'x) <2~-1 i i A"(]sl-s21, x)dslds2 + 2 " - 1  t i A~(]s,-s2],x)dsids2 m 
O 0  0 

1 

By assumption (A4) of Sect. 2, 

d(Isl -s21, x) = x  _ ~ le(u) e(x[s 1 - s2[ +u)[ du 

= o ( V  ( x ) ) I s 1  - - 2 ,  

x ~ o o ,  uniformly in O<[s l - sz t<t ,  where a s  

Using also (4.10) of Lemma 4.2, we get 
t t 

J(t, x)<=o(V2m(x)) ~. ~Is I -s21 r176 2-2')'~dsl ds z 
O 0  

1 

1 

�9 ! max(lsl -s2l  (2u~ -2-2.m, is 1 _s2i(2r~o-2+2~l,,,dsl ds 2 

and therefore 

. J(t, x) ,, 
1111 - ~ X  ] = O .  

x ~  oe ( X )  

This completes the proof. [~ 

We now introduce,_ for each m> 1, a collection of processes {Ym(t, x), x >0} 
and a process I'~,(t). 

Let 1 - < H 0 < 1 and let e(u) be a function satisfying the conditions of Sect. 2. 

For each x > 0, define 

t -4-00 

0 - - c o  

e(x(s--~9)dB(~2)"" S e (x ( s -G) )dB(G) .  
- o o  - o o  

By hypothesis on e(u) 

S eZ(x(s_~))d~ =-1 eZ(u)du<oo 
- o~ X - oo 

for all x>0 ,  and therefore Y,,(t, x) is well-defined in L2(P) for each x>0.  

(4.19) 
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Define also the process 

1 
Y,,~ (t) - Z., (t) (4.20) 

K(m, Ho) 

where K(m, Ho) and Zm( 0 were introduced in Sect. 1. Theorem 3.1 of Taqqu 
(1978a), ensures that Y~(t) is well defined in L2(p). 

Now set 

V (x) = XH~ ~ L(x). 

Theorem 4.7. For each t > 0, 

(_L(t,x) )~ 
lim E \  Vm(x ) Ym(t) =0. 

- ~ ( , x )+Y~ (t, x), where Proof Set Ym(t, x ) -  y(n t (2) 

Y~l)(t,x)= i ds i e(x(s-~l))dB(~x) S e(x(s-~2))dB(~2) 
0 -co -oo 

f e(x(s-~3))dB(~3)"" f e(x(s-~,,))dB(r 
03 - - c O  

and 

Y~2)(t,x)=~ ds e(x(s-~i))dB(~) ~ e(x(s-~a))dB(~2) 
0 s -o~ 

~ 2  e r a -  1 

e(x(s-~3))dB(~3)... ~ e(x(s-~))dB(~). 
- -  oO - - 0 O  

Now, 

E[Ym(t, x) 2 =<2{E C Y2Xt' x) \2 /y(a)(t x~\ 2] 
5(0 +~ ~ - "  

B u t  

2 i ~1 ~ - 1 /~2)(t'x) ~,(t) = d~ ~ d~2... ~ de, 

�9 l i d s (  m V(x) i = f i ( s - ~ ' ) n ~  ~ i=,  

t Sl  AS2  $1 A32 Sl AS2 

0 0 -09 -oo -oo 

_ V(x) ,=1[[ (sl-~,)"~ 

. ( 01f(x(s2 -~,)) ~ ) ,_ v(x) ,=~ (s2-~3'~~ " 

By Lemma 4,5, this tends to 0 as x ~ oo. 
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N o w  let 

O(x(s - 40) = e (x ( s -  41)) 1(,, co)(~ 1). 

Then 

E(Y(~2)(t, x)) 2 

0 0 --co 

e(X(S1 -- ~2)) e(X(S2 -- ~2)) d~2 "-- ff e(x(si - ~,,,)) e(x(s2 - ~m)) dim 
-co -co 

<=5 ds1 
~.Sl A S2 

�9 l e ( x ( s l - O e ( x ( s 2 - O ) l d  ~ {o } 
- -0  d81 Oi ds2 -~oo le(xu) e ( x ( J s1 -  s21-}- u)[ du 

. { f ~ ] e ( x u ) e ( x ( , s l - s 2 l q - u ) , d u }  m-1 

= o ( V 2 " ( x ) )  

as x--+ 0% by L e m m a  4.6. This concludes the proof. [ ]  

w 5. Weak Convergence 

Let X(s), - oo < s < oo, be the normalized stat ionary Gaussian process defined in 
Sect. 2. The parameter  H0 that enters in the definition of  X(s) is required to satisfy 

1-~<Ho<1 (5.1) 
2m 

where m > 1 is an integer. 
In t roduce  the Hermite  polynomials  

x~ d q x2 
Hq(X)=(_l)qe2_~xqe z q = O ,  1 . . . . .  

The first few are Ho(x ) = 1, Hl (x  ) ~-x, H2(x ) = x  2 - 1 ,  H3(x ) = x  3 -  3x. 
We first study the convergence of the finite-dimensional distributions of  

1 xt 
! H,.(X(s)) &, 

d(x) 

t > 0, as x --+ ~ ,  for arbi t rary m > 1. 
As normal iza t ion factor, we choose 

m~ d(x) ,. x'%"(x) 
rr K(m, Ho) 

(5.2) 
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as  x --, 0% where 

H = ( H o - 1 ) m + l  

and where the constant K(m, Ho) is defined as in (1.6). This choice ensures that 

E Hm(X(s))ds = ~ m!(EX(sl)X(s2))'~dsl ds 2 
O 0  

~d2(x) (5.3) 

as x ~ oe (see (2.4)). 

Lemma 5.1. Let Ym(t,x) be defined as in (4.19). Then, for each x > 0  

x t  

Hm(X(s)) ds ~ m! 1 +~- = - -  2 Ym(t, x), 
0 G rn X 

d where = indicates equality of the finite-dimensional distributions. 

Proof. First note that, by McKean  (1973) for example, 

H~(X(s))=Hm(1 ~ e(s-~)dB(~)) 
- o o  

= ~  ~ e(s -~)dU(~)_~ e(s-~2)dB(~2)... _~ e(S-~m)dS(~). 

Now let a~, a2, ..., ap be p >  1 arbitrary constants and let t~, t 2 . . . .  , tp>=0. Then 

1) XCj p t j  

aj ~ U~(X(s))ds=x ~ aj~Um(X(xs))ds 
j = l  0 j = l  0 

m !  P t j  + co 

= ~ x ~  aj~ds ~ e(x(s-~))dB(x~l)  
u j = l  0 --oo 

e(x(s-~2))dB(x~2)... ~ e(x(s-~m))dB(x~,,) 
- o o  oo 

in the L2(P) sense. Using an argument similar to the one used in the proof  of 
A 

Theorem 3.1 of Taqqu (1978a) (formally, dB(x~)=x 1/2 dB(~)), we get 

aj ~ Hm(X(s)) ds = 2. at _~ x 
j = l  o j = l  

for each x > 0. The lemma follows because the aj are arbitrary. 

T h e o r e m  5 .2 .  A s  x ~ 0% 

X! 

1 ! Hm(X(s))ds ~ Z,,(t) 
d(x) 

in the sense of convergence of the finite-dimensional distributions. 

[] 
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Proof Let al, a 2 .. . . .  ap be arbitrary constants and suppose without loss of 
generality that tl, t 2 . . . .  , tp>0. Then by Lemma 5.1, for each x>0 ,  

i+ 'n P 1 ~t~ a ~ m!x 2 
j~=laj~(-~ ! "m(X(s))dx=j~a,  ~-m~(x ) Y,,(tj, x). 

But by (5.2), 

1 , m  m 
gtl!X -'-2 m!a'K(m,  Ho) xl+Y 
~r"d(x) ~a"  rn! x'Cn~ l)+ l Lm(x) 

= K(m, Ho) 
v'~(x) 

as x ~ o o ,  where V(x)=xW~ Also, by (4.20), 

Zm(t ) =K(m, Ho) g~(t), 

Therefore, as x ~ oo. 

P tf l ,xl+2 P ~ (-Ym(tj'x) ) 
~laj a,~d(x-~- Ym(tj, x)~ ~ ajZm(tj)+K(m, Ho) aj Ym(tj) . 

j =  j = l  j = l  \ vra(X) 

But 

lira E t ~ aj \- V - ~  L(t~) 
x ~  oo k J  = 1 

_< ~, a} 2., lim E gm(t 
- - j = l  j= l x~oo 
=0 

by Theorem 4.7. This concludes the proof. [] 
Hm(X(s)) is a new process, obtained from the Gaussian process X(s) through a 

non-linear transformation. A more general non-linear transformation would lead 
to the process G(X(s)). We now choose G to be an arbitrary function satisfying 
EG(X(s)) =0 and EG2(X(s)) < o(3, and we study the weak convergence in C[O, 13 of 

1 xt 
[ ~(X(s)) ds 

d(x) 

as x ~ o o ,  where d(x) is defined as in (5.2). C[0, 1] is the space of continuous 
functions on [0, 1] with the sup-norm topology. 

Let X denote an N(0, 1) random variable, and as in Taqqu (1975), let 

ff = {G: EG(X) = O, EGZ(X) < oo}. (5.4) 

The Hermite rank of a function G el# is the index of the first non-zero coefficient 
in the expansion of G in Hermite polynomials. Let ffm be the subset of ff that 
contains all functions with Hermite rank m. Then 
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Proceeding as in the proof of Corollary 3.1 of Taqqu (1975), one can show that 

o 

E G*(X(s)) ds < ~ ~ [EG*(X(s~)) G*(X(s2))[ ds: ds 2 
0 

=o(d~(x)) (5.5) 

as x-*o o, and therefore the limiting finite-dimensional distributions of 

1 ~tG(X(s))dsarethesameasthoseofJ~) 1 i' Hm(X(s)) ds. But by Theorem 
d(x) o m. d(x) o 

5.2, they are those of ~ Z m ( t  ). This concludes the proof. [] 
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where fr contains the function 0, and, 

when i 4@ 

Let ~ Hq(') denote the Hermite expansion of G(.)efr Since 
q ~ m  q �9 

the coefficients J(q) satisfy 

J (q) = e ~ (x) G (x), 
X2 

-~)~ (IRI' ~ - ) "  ]/2n By and the series y" Hq(X) converges to G(X) in L2\ 
q m m  q "  

Parserval's relation, 

EG2(X) = ~ ja(q) q=m ~ .  ~ 00" 

Lemma 5.3. Let G~,~.  Then as x~oo,  

d(x) G(X(s))ds~J~(m~. 2m(t) 

in the sense of convergence of the finite-dimensional distributions. 

Proof Let 

(X (s)) = G (X (s)) - J-~)- Hm (X (s)). (5.4) G 

Then 

it J (m) ~t xt 
G(X(s)) ds =~- .y  ! uAX(s)) + S G*(X(s)) ds. 

0 - 0 
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To establish tightness, we will use 

, L e m m a  5.4. Let G ~ ~fm. Then for large enough x, there exists positive constants C and 
(5, independent of t, such that, for all t >= O, 

E G(X(s))ds <Ct  1+~. 
0 

/-/ere 0 < 3 < 2 H - 1 .  

Proof Suppose without  loss of generality that t > 0, and let 

\d((x) ( 1 xt G(X(s)) ds) 2 Q(t, x)=E ! (5.6) 

By (5.4), (5.5), (5.3) and (5.2), 

J2(m) ~ / 1 xt ds)2 
l 

J2(m) dZ(xt) 
m! d2(x) 

J2(m) (xt)2tl Lm(xt) 

m! x2nLm(x) 

as xt--,oo. Thus, V e > 0 ,  3t/(e) and a constant  CI=CI(e,m ) such that for all 
xt>t/(~),  

2~ Lm(xt) 
Q(t 'x )<Clt  L--~x)" (5.7) 

Choose  now 0 < 6 < 2 H -  1 and consider two cases: 
i) When  xt>t/(e) ,  it follows from (5.7) that  

(xt) 2//- 1-6L2m(xt) tl+6" 
Q(t,x)<C1 X2tt-l-3L2m(x) 

(xt)2"~- l-~ L2~(xt) 
Since 2 I4 - 1 - cs > 0, x2~/_ 1 - ~ L 2 m (x) tends to 1 as x -+ 0% uniformly in 0 _< t _< 1, 

and thus, for x large enough, there exists a constant  C 2 > O, independent  of  t, such 
that  

Q(t,x)NC2t 1§ 

ii) When xt<tl(e), use (5.6) and the fact that  EG2(X(s))= C 3 < cx?, to get 

x2t 2 
Q(t, x)< C 3 d2(x ) . 

Since d(x) is asymptotical ly propor t iona l  to x2ULm(x) as x- -+~,  there exists for 
large enough x, a constant  C 4 >0 ,  such that  

x2t 2 
Q(t, x) <= Cr x2tr L2m(x). 
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But (x t ) l -o<~ ~-~ where 3 is defined as above. Therefore 

xl+6-2H 
O(t,x)<C4~ ~ ~ ~ tl+~ 

~ C s t  1+~ 

for large enough x, because 1 + 6 -  2H < 0. This concludes the proof. [] 
As a consequence of Lemmas 5.3 and 5.4, we obtain 

Theorem 5.5. Let G~N m. Then as x--*~ 

1 ! G ( X ( s ) ) d s ~  2, ,(0 
d(x) 

in the sense of weak convergence m C [0, 1]. 
We now turn to the discrete parameter case. 
Let D [0, 1] be the space of functions that are right-continuous and have left 

limits, and suppose that D[0, 1] has the Skorokhod topology, The following 
theorem is based on an important result recently obtained by Dobrushin and 
Major (1979). 

Theorem 5.6. Let G ~ (~,,. Suppose that { Xi, i > 1} is a stationary normalized Gaussian 

sequence with E X i X i + k  ,-.~ k 2H~ -2L2(k) as k-+ 0% where 1 - ; m < H o  < 1 and where 

L(x) is a slowly varying function at infinity, bounded on bounded intervals. Then 

1 
d(N) I ~ I G ( X i ) ~ - ' Y m ( t )  

in the sense of weak convergence in D[O, 1]. 

Proof. Dobrushin and Major (1979) have shown that under the assumptions of this 
1 Ira] 

theorem, the fnite-dimensional distributions of ~ , , J  =l~V~i~ G(XI) converge as 

N ~ oo. In fact, they converge to the finite-dimensional distributions of J(m) Zm(t ) 
mt 

This follows from Theorem 5.5. by specializing {Xi, i> 1} to a sequence that admits 
a weighted average representation consistent with the assumptions of Sect. 2 (see 
Taqqu (1978b) for details). It also follows from the identification (in the finite- 

dimensional distributions sense) of a-~)-Zr~(t ) with the limit obtained by 
r r ~ ' .  

Dobrushin and Major (see Theorem 6.3 below). The tightness of ' the D[O, i]  

sequence [ ~ ( ~ i ~  G(Xi), N = l ,  2 . . . .  can be established by suitable modifi- 

cations of the proof of Lemma 5.4. []  

See Taqqu (1975) for an alternative proof of this theorem in the cases m = 1 and 
m=2.  
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w 6. The Wiener-It6-Dobrushin Representation for Z=(t). 

Zm(t) admits various representations, equivalent in the finite-dimensional distri- 
butions sense. 

Consider first the definition of Zm(t ) given in (1.3). The integrand 

t m 

[I (s- 1G<s) ds 
o j _ l  

is a symmetric function of 41,.--, ~ ,  and therefore one can write 

Zm(t)_K(m, Ho)m, ~ f ' { i "  ~ } j .~l(S-~))Uo-~l(~j<s)ds dB(~l).., dB(~m) (6.1) 

where y' is the Wiener-It6 multiple integral on 1R'. See It6 (1951) for a precise 
Rm 

definition. Heuristically, y' denotes integration over 1R m, disregarding integration 
IRm 

over the hyperplanes ~i = ~ j, i # j, i,j = 1, 2 . . . .  , m. The integral f' is defined through 

an isometric mapping from the Hilbert space of square integrable functions 
f (~ l  . . . . .  ~m) into L2(p). 

Let now W and y" be defined as in Sect. 4 of Dobrushin (1979). These 

definitions involve a modification of the definition of the Wiener-It6 multiple 
integral. W is a Gaussian "white noise" (complex) random spectral measure that 

satisfies W A~ = W(A~), W ( A ) = W ( - A )  and EW(AOW(A2)=IAlc~A21 
i i = 1  

for Borel sets of IRI\{0} that have finite Lebesgue measure ['[. The real and 
imaginary parts of W(A) are independent normal random variables with mean 0 
and variance 1 ~,,. ~[AI. To define one introduces d4~, the real Hilbert space of 

complex-valued symmetric functions f(2~, ..., 2,,) of 21,.. . ,  2,~ ~R a that are even, 

i.e. f(21 ... .  ,2~) = f ( -  21 ... .  , - 2m), and that have a square integrable modulus. The 
integral y" is defined through an isometric mapping 

X~ --+ L2(p '') (into) 

f ~ I ( f )  = ~" f(2~ . . . . .  2,,) W(d20 ... W(d2m). 
~ m  

P" is the probability measure of the space on which W is defined and L2(p '') is the 
real Hilbert space of real-valued functions that are square integrable with respect to 
P'. The mapping is defined in such a way, that heuristically, one disregards 
integration over the hyperplanes ~ = ~j and ~ = - ~ j ,  i+j, i,j = 1, 2 . . . .  , m. The fact 
that both f and W are even ensures that I ( f )  is a real-valued random variable. 

Lemma 6.1. Let A(~, . . . .  , ~,) be a real-valued function in I~(1R ~) which is invariant 
under the permutation of its indices, and let 
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m 

M.S. T a q q u  

be its Fourier transform. Then 

~' A ( ~  ... ~,.)dB(~l)... dB(~,.) ~= ~" A(21, ..., )~,.) W(d21). . .  W(d2,.) (6.2) 

Proof Let 0o,  0~, 0z , - .  be a complete or thornormal  set of functions in LZ(IR1). 
Then 

% . . . . .  
kl . . . . .  k ,~>0 

(6.3) 

Since A is symmetric, 

.(' A(~ ~, ..., ~,.) dB (~ 1)... dB(~,~) 

( i l  . . . . .  i ,~ )~z ,~  k 

= ~  Ck~ ..... k~ f, l~. ~ ~k~(~') "'" Ok~(~,.)dB(~l)... dB(~,.) 

= ~ ck ...... k~Hj~(~ 49t(r dB(~)) H~(~ 492(~) dS(~))... H~(~ 49,~(~) dB(~)) 
k 

(6.4) 

by applying Theorem 3.1 of It6 (1951). Here  re" is the set of all m! permutat ions of 
the indices (1 . . . .  , m), the Hj 's  are the Hermite  polynomials  defined in the preceding 
section and the set of functions {0kl, 0k2, .... 0k~} is identical to the set of functions 
{49t, -.., 491, 49z . . . .  ,492,. . . ,  49 . . . . . .  ,49,.}, there being j l  identical functions (denoted 
q51), Ja other identical functions (denoted 492) . . . .  ,j,~ other identical functions 
(denoted 49,.), with O<jl, ... , j "<m and Jl + ... +Jm =m' Each index Jl, .--,J,. and 
each function 491, qS" depends on kl, k 2, , k,.. 

The Fourier  transform A(.~ 1 . . . . .  )~r,) belongs to dr,,. Using (6.3), we obtain 

~](2~ . . . . .  2,.) = ~  c k ...... k,,~kl(21) ... ~k~(2,.) (6.5) 
k 

where ~(2)=(2~z)-, /2~ e~a0(~)d~. By Parseval 's identity, [ [0] 2 = [  [~1 ~, and hence 
{~k, k=0 ,  1, 2, ...} is a complete or thonormal  set in ~, . .  

Consider now ~ A(,~I . . . .  ,2, .)W(d)~l). . .  W(d2,.). It can also be expressed in 
terms of one-dimensional integrals. Indeed, starting with (6.5), using formulae (4.14) 
and (4.t5) of Dobrushin  (1979), and proceeding as above, we get 

~" ] ( 2 D  .,., 2,.) W(d20  ... W(d)L,.) 

= Z .....  J4jd  
k 

(6.6) 

where the indices ix , . . . ,  J,, and the functions 491 . . . .  ,49,. are defined as in (6.4). 
To compare  (6.4) with (6.6), we note that for any s > 0, the random vectors (X k 

=~/k(~)dB(~),  k = 0 ,  1, ..., s) and (Y~=~k()~)W(d2), k = 0 , 1 , . . . , s )  are both 
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mul t ivar ia te  normal ,  with mean  0 and covariances  

i, j = 0, 2, .. . ,  s. They are identically distributed, and therefore 

~' A(~I , - . . ,  ~m) dB(~l) '"  dB(~m):A=~"/1('~1 . . . .  , '~m) W(d/]-l)..- W(d'~rn). [] 

Remark 6.1. Relat ion  (6.2) can be in terpre ta ted  as Parseval 's  identi ty where the 
complex even measure  W(.) is viewed as equivalent  (in the f ini te-dimensional  
dis t r ibut ion sense) to the Four ier  t ransform of the real measure  B(.). E JW(A)] 2 
= E(B(A)) 2= [d[ follows f rom the L 2 isometry  of the Four ier  t ransform,  y' ensures 
the independence of dB(~l) . . . .  ,dB(~m) and ~" ensures the independence of 
W(d2t),  ..., W(d2m). 

Remark 6.2. L e m m a  6.1 also holds if ~ ~, .. . ,  ~m e IR ~ and 2 ~ . . . . .  2 m ~ IR ~, v _>_ 1. In that  
case, define A(2~ . . . .  ,2,,) as the l R ~ - F o u r i e r  t ransform of A ( ~  . . . .  , ~ )  and replace 
IR m by IR m~ in (6.2). 

L e m m a  6.2. Let 

-koo 
A ( ~ I ,  . . . ,~m)  ~-- ~ (~(S) ~ ( S - - ~ j ) H ~  

-o~ j = l  

where � 8 9  0 < l and q~(s) is any integrable function in IR 1 such that 

[A(~.l,...,~m)12 d~l...d~m < cx:). 
IR TM 

-boo 
Let 6(2)=(2~r)-x/2 y ei;~r Then, 

- oo 

y' A ( ~ ,  ..., ~m) dB(~l).., dB(~m) 

A 

... [2,,] ~--R~ W(d21) ... W(d2~). 

Proof We first evaluate  the Four ier  t ransform ofA(~ 1 , . . . ,  ~m)" Some care is needed 
because the function u n ~  belongs nei ther  to LI(1R 1) nor  to L2(IR1). 
In t roduce  

~,,) = fA(~  1, .. . ,  ~ )  if '~kl < T ,  k = l  . . . .  ,m 
AT(~I, m g o ~ [o otherwise. 

m 

If AT( ,~ l , . . . , 2m)=(27c) -m/2~e  j=l AT(~I  . . . . .  ~,~)d~l . . .d~,  which belongs to 
L 1 (IR =) c~ L 2(1Rm), converges, as T ~  m, to d(2z,  . . . ,  2=) a lmost  everywhere  point-  
wise, then, by a classical argument ,  A(2, ,  .. . ,  2m) is a lmost  everywhere equal to 
the LZ(lR'~)-Fourier t ransform of A(~I,  . . . ,  {m). 
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Introduce 

Bz(a, b)= 1--1--~ i e-i~uHo-~ du 
V 2 ~  o 

for 0_<a_<b<oo,  and Ba(a, oo)=limB,(a,b ). Since H o > � 8 9  one has 
1 b~co 

IB~(0, 1)[ <(2~z)-*/2 5 uH~ =(2r t ) -  1/2(H o -  �89 1. By the second mean-value 
0 u' 

theorem, for ~, # 0 and a > 0, B,(a, b) = (2re)- 1/2 a~o- ~ ~ e- ~* du where a <_ u' < b and 
2ano -~ a 

therefore IBz(a ,b)[< = Thus 
= (2re) */2 I;~1" 

O_<aSb (2re) 1/2 q - ~  

Now, 

At(21 . . . .  , '~m) 
1 ~ ~'~: + oo 

~,~ f i  ( s -~ )  l(~j<s)l(l~;l<r)dsdm~ - (2~)~ / /  e '=1 5 r H~ 
-oo j = l  

1 - i  ~, u/j +co 
--(27~)m/2 e ,=* ~ da(s)eiS(&+.,.+zm) n o - }  

- m  j = i  

�9 l ( s -  T<uj<s+ T) dsdmu. 

Suppose 21, . . . ,  ;~" different from zero. Then  

li/~(,~, .... , ,~)1-<- +~ tqS(s)l leI IBa,(max (0, s -  T), max (0, s + T))[ ds 
- co  j = l  

_-< _ 14(s)l ds ~ + 

is finite and uniformly bounded  in T. Thus, 

A(21 . . . .  ,2 , . )=  lim At(21, ..., 2,.) 
T~co 

+co 

= [. ei,(z~ +...+ am) qb (S) [I lira Bxj (max (0, s - T), max (0, s + T)) ds 
--co j = l  T~CO 

e--iua'JuHo--} du , 
j = l  0 

where denotes an improper  Riemann integral. After a change of variables, 
0 

= V / ~ - ~ ( ~ I  -1-...  q"/~") 12jl -~-no e-i.,sig.Z, uHo-~du 
j = i  0 

= ~ 7 5 ( 2 1  +... +2") f i  {llfi-~~ - "2r(Ho-�89 C(1)} 
j = l  

Where C(1) = e-i}(Ho- i) for 2 > 0, C(--  2) = C(i)  and thus I C(,@ = 1 for all 2 # 0. 



Convergence of Integrated Processes of Arbitrary Hermite Rank 81 

Applying Lemma 6.1, we get 

~' A ( ~ , . . . ,  ~,,)dB(~l)... dB(~m) ~= ~" 2(2~,. . . ,  2,,) W(d20. . .  W(d2,,) 
IR  m N m 

( - r(H~ " ~ - ~ ( ~ + . . . + ~ 0  

"{j=i i ')i'j[ �89176 C(.)~1)W(d}~l)... C ( ~ m ) W ( d , ~ m )  

~-{r(H~ V ~  ! ' { } I"V~;$(~I + +~) ~I l~; *-'~ W(d~O... W(dX~) 
�9 .~ j ~ l  

after applying the change of variables formula for Wiener-It6-Dobrushin integrals: 
formally, C()~j) W(d)~j) = W(d~,j) (see Dobrushm 0979) Proposlhon 4.2). [] 

Theorem 6.3. Z,,(t), defined in (1.3), admits also the following representation 

Z~(t) A=KI(m, Ho) ~,, ei(;'~+"+x~)t-1 1 1 ~ ~-~ +~7.~-2~i l~,l "o--~ "l.~ml "o-~ W(d~)... W(d;~m) 
where 

= f  (m(H o . _  - 1)+ 1)(2m(H o - 1)+ 1) ?~1/2 
Kl(m, 11o) 

tmr ~2r(2 ~ ~ o ~ ) V ~ j  

Proof. Let p > 1 and let as, ..., ap be arbitrary real numbers. Let Zm(t) be defined as 
in (1.3). Then by (6.1), 

P 
Y~ ak2.,(tk) 

k=l 

- m! ~,, ~ ak I 1-[ (s-~j)R~ <s) dB(~l)...dB(~,,) 
k=l Oj=l 

-K(m 'H~  I' A(~I, "", ~m)dB(~a)'." dB(~m) 

where we set 

P 
(;b(s)= ~ akl(o,~)(S ) 

and 
+ao 

A (~1 .. . . .  ~,,) = ~ q5 (s) ~[ (s - ~j)~o- ~ l(~j < s) ds. 
--oo j ~ l  

Naturally, A~L2(1Rm). Applying Lemma 6.2, we get 

P 
a k Z L ( t k )  A Kl(m ,HO ) j'tt ]~-(]~(J[l-~-'"nL'~m) 

k ~ l  R m 
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where  

K(m, Ho)(F(H o - �89 
K 1 ( m ,  H O) = 

m! (2n)" / :  

p tk P e i'ztk -- l 
Here,  1 / ~ - q ~ ( 2 ) =  ~ a k ~ ei~Xd~ = ~ a k The  c o n s t a n t s  al, ..., a v be ing  

k = l  0 k = l  i)~ " 

arb i t r a ry ,  we c o n c l u d e  tha t  

-- A ~,,  e i ( ) ' l+ ' ' '+ ) 'm) t  - -  1 
Z~(t) =K~(m, Ho),~, ~ - ~ . . ~ )  [2~[ ~ - " ~  ... 2,, ~ - n o  W(d,~O ... W(ds 

I t  r ema ins  to eva lua t e  the  c o n s t a n t  Kl(m, Ho). U s i n g  the  express ion  for 
K(m, Ho) given  in  (1.6), we get 

=~m!(m(Ho-1 )+  1 )_ _ ~(2  ~m(H0 ~ 1)_++ 1)(F(H__~-�89 ~/2. 

But  

(r(/-/o - �89 2 (C(Ho-�89 C ( ~ -  Ho) 

2n ~(u+u2)n~ 2 n F ( H ~ 1 8 9 1 7 6  
0 

7~ 
2 h E ( 2  -- 2Ho)  s in (H o - �89 

s ince Y(z) F(1 - z) - . . Therefore ,  
s in ~zz 

(m(Uo - 1 ) +  1)(2 re (no  - 1) + 

This  conc ludes  the  proof.  [ ]  

Acknowledgement. I would like to thank P. Major for his useful suggestions about this last section. 
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