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Summary. The error bound O(I/W) is derived in the central limit theorem

for partial sums ) f(¢;) where ¢, is a recurrent discrete Markov chain and f
j=1

is a real valued function on the state space. In particular it is shown that for

bounded f and starting distribution dominated by some multiple of the

stationary one, it is sufficient for the chain to have recurrence times with

third moments on order to get this bound.

§ 1. Introduction

Let I be an at most countable set of states, (p;;); ,; @ stochastic matrix (i.c.
p;20, 3 p;;=1for all iel) and X =(Q, %, £,, P) a Markov chain with transition

jel
probabjilities pisie forneNyg=NU{0}¢,: Q-1 is U-measurable and for iel F,
is a probability measure on (2, N) with P({,=i)=1and P({,=1i,|Ey=1g,---, &, 1
=1i,_1)=p; . if the left side is defined. We assume that I is one recurrent class,
ie. for each iel &, visits each state infinitely often with P-probability 1. For a
probability u on I B, is the probability ) u(i) P, on (2, ).
iel

We fix once for all a distinguished point Oel. Let T,: @ > N,u {0} be

defined as follows:

T,=inf {n=0: £,=0}
T,=inf{n>T,_,:¢,=0}, kzl

It is well known that for any starting probability 4 and all ke N, T, < P,-as.,
so the

4=T,~T,_,, kzI

are well defined if we restrict everything on a subspace of Q which has full
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measure for all P,. For the sake of notational convenience we write 7 for 7. The
7, are well known to be independent and identically distributed.

If f: I - R, we call the sequence f(&,),f(£,), ... a functional of X.

If the chain is positive, i.e. Ey(t)< oo, then there exists a unique stationary
probability distribution IT=(xn(i)),.;, i.c. we have X;=(i)p;=n(j) for all jel.
£o0.Eq,... with the law P, is then a stationary process. We call it the stationary
chain.

In the sequel the chain X is assumed to be positive recurrent. The following
central limit theorem is due to Doeblin (see [3], I. 16, Theorem 1).

Theorem A. If the chain is positive and if E, (Z [fl(fi))~< oo then TI(f)
=Y n(i)f(i) is well defined, and if i=1

iel

PU)=Ey (X, U(E)=T1(1) >0

s

then

lim B

- 00

Y (fE)—H(f)=n=2()

oVn j=1

where @ is the standard normal distribution function and a= E (7).

Our main result is the following Berry-Esseen type bound:

Theorem 1. Let p be a starting probability on 1. If

Ey(%)< o0 (1.1)
T 3

Eo (2 1016)) <o0 12)

E,(Ty)< o (1.3)
To

£, (X 110)) < o0 (14

then

sup, | P, =0~ "% (13

1/,
(al/n j=1

The proof will be given in § 3.
Taking in particular u=1I1, (1.3) and (1.4) are entailed by (1.1} and (1.2). To
see this, the following result of Pitman [97 is useful:

(f(é,)—H(f))<t) (1)

Pitman’s Occupation Measure Identity

Let g: I™ — [0, o0) be measurable, let S be a stopping t1me for &,. &4, ... and let
v be the occupation measure on I defined by v(i)=E, ( Z 1,(E, ) Then
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S—1
Eo Y gt ) =LV Bl b))

iel
With this result one easily proves the following
Lemma 1. If u=1II then (1.3} and (1.4) follow from (1.1) and (1.2).

Proof. (1.3) is well known to follow from (1.1) (see e.g. [9]).
Let S=inf{n>0: &, =0}, h(i)=max(|f(i)|, 1). Then

£, (Tzl 1)) S En (i We))
<6, (3 e ))+h

<E, (h )+h(0)

-1

(Z h(& Z h(c))+h(0)
<r0E (T h(éi)) +h(0)
<20, (Y. 1116)) +27(0) Eole) +h(0)

where the equality is by Pitman’s identity, using the fact that the occupation
measure for S is 7(0) I1. So it is seen that (1.4) follows from (1.1) and (1.2).
From Lemma 1 and Theorem ! one derives the following

Corollary 1. If the starting probability p is dominated by some multiple of IT and if
(1.1) and (1.2) hold then (1.5) is true.

It is desirable to have conditions based on more familiar entities. The
following so-called strong mixing coefficients have been introduced by Rosen-
blatt (see [10]):

Let &, =0(&,..-. &) E’g"zo(éj,jgk).oc(k), k=0 is defined to be

sup sup sup |P,(ANB)—P,(4) P(B)|

nelNg Ae, Befntk

The following theorem will be proved in §4.

Theorem 2. Let 120, €R then Z n*a(n)< oo if and only if the chain is aperiodic
and Ey(t*"?) < 0. n=0

With this result and Corollary 1 one has

Corollary 2. If some multiple of II dominates u, if f is bounded and Znoc n) < o
then (1.5} holds true.



62 E. Bolthausen

For unbounded functions one obtains for p>3
T 3 T i 3/p
Eo (X U16)) SEoe" ¥ 1))
j=1 j=1

<(E, (¢3%~ Dio=3n)p= 3 (Eo (i ]f|P>)3/p.
j=1

So one has

Corollary 3. If some multiple of II dominates u and for a real number p>3
O(f1P)< oo and Y n®+ 3= g(n)<co then (1.5) holds true.

Bounds of order O(n~'/?) for bounded functions f have been obtained by
Lifshits [7] under conditions based on the maximum correlation coefficients, i.e.
the cosinus of the angle between the spaces L,(F,) and L,(&" ). Such con-
ditions seem to be quite strong for Markov chains. If any of these angles is
larger than zero a(n) converges to zero exponentially fast ([7], Theorem 5). It
follows from our theorem 2 that for any chain with recurrence times with
moments only of a finite order all maximal correlation coefficients equal 1.

The method of proof used here is the renewal approach which goes back to
Doeblin:

T,
Let p,=max {k: T,<n} and [,=T, ; let further X, = Y (f(&)—TI(f).
The X, are independent and identically distributed. A= Tl

Obviously

n To Pn

2 JE-I)= X (fE-T)+ X X,

= = i= (1.6)
+ X (€)=

j=ln+1

Theorem A then follows from the independence of the X;, a central limit
theorem with random summation and the asymptotic negligibility of first and
third summand in (1.6) (after appropriate norming). However, error bounds of
order n~Y? for central limit theorems with random summation are known only
if X; and p, are independent, which certainly is not true in our case. Landers
and Rogge in [5] derived bounds under rather general conditions, but applied
to the situation in theorem 1 they only yield O(n~*/*(logn)*/*) (see [6]). Bounds
of order O(n~*/**%) under stronger conditions had previously been obtained by
me with a modification of Landers’ and Rogge’s method [2]. Theorem 1 follows
upon a close look at the dependence between p, and the X ;.

A straightforward simplification of our proof also gives the following theo-
rem which refutes the seemingly general belief that bounds of order n= /2 in
central limit theorems with random summation are obtainable only in the
independent case.

Theorem 3. Let (n,,7,);.n be independent identically distributed two-dimensional
random variables with
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E(n;)=0, E(”/iz):L E(|1/]i|3)<OO, r,eNN, E(ri3)<oo

k
Let a=E(r;) and pnzmax{ Z < } Then

sup, =0(n~1?),

PWain ¥ n,zt) - 000

§ 2. A Semi-Local Berry-Esseen Bound

We prepare for the proof of Theorem 1 with a special Berry-Esseen theorem for
two-dimensional iid. random variables (({,,y,), n€N, which are lattice in one
component. So we assume there is a peR such that y,ep+7Z as. It is further
assumed that E{,=Ey, =0, E|{)><oc0, Ely,|?<cc and that the covariance
matrix X'=(0;;); ;_, , has full rank 2.

Let A={neN: JkeZ with P(y—p=k)>0, P(y—p=k+n)>0}. Clearly
A+, and for the sake of convenience we assume the largest common divisor d
of A to be 1. This is not essential. The modifications needed in the case when
this is not true are straightforward and therefore omitted.

Let ¢ be the two-dimensional density function of the centred normal

distribution with covariance X, and let y(x, y}= f (s, y)ds. Let S,= Z &, T,

= Z Vis A ,) be the characteristic function of (S /][ T //1/ and g(tl, t,) be

the characterlstlc function of ({;,y;— p). Obviously
Ity 1) =Lg(t, /Y m, 1,V m exp (i, /Y m)]" 2.1)

Lemma 1. Given 6 >0, there exist 0'>0,0<r <1 and C>0 such that 1,(t,,t,) and
all partial derivatives up to the third (or any fixed) order are dominated in

absolute value by Cr=" for [t,| <8'V/n, 5]/%§It2|§n]/ﬁ.

Proof. From the assumption d=1 it follows that |g(0, v)| is bounded away from 1
uniformly in é £|v| < n. From continuity of g it follows that there is a ' >0, r<1
with |g(u, )| £r for [u| <, 0=Z|v|<n. The lemma now follows from (2.1} and the
chain rule.

Proofs of the following two propositions may be found in [1] (Theorem 9.10
and Theorem 22.1).

2
Proposition A. Let A,4(t,, Z)—exp( 5 ) o Jk) There exist constants
Lk=1

%, B,c>0 (depending only on X and E|(;, E[y I?) such that for u,veN,, u+v=<3
0

U+ v

atu atv (/Iﬂ(tlﬁ 2) A (tla 2) <)_|t‘3 u—v "ﬂ’tP

]/
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Jor e, 1t,] SEYn, where t=(t,t,) and |t|=(t>+12)">.
For aeZ let ya,nz(np—i-oc)/]/ﬁ.

Proposition B.
sup (1+1y,,,/)[P(T,/ n=y, )= (0,5, )V n|=0(m"").
The main result of this section is

Theorem 4. Under the above stated conditions

P(Sesn Loy, )

ﬁ:x, 12 =ya,,.> ﬂw(x,ya,n) =0 (%)

Remark. The proof given below easily gives the stronger statement where y2 , is
replaced by |y, ,>~° (6>0). The statement with |y, /> may also be true but
would probably require more refined techniques. The above theorem is sufficient
for our purpose.

supsup (1+y2,)

xeR acZ

Proof.  Let  E(x,y,)=P(S,/V/nsx, T/Vn=y,) and E(xy,,)
qu(xaya,n)/E;(mLya,n) lf E1(Oo’ya,n)>03 F;(xaya.n): l[O,m)(x) lf En(waya,iz)fo- For
fixed a«eZ FE(.,y,,) is a distribution function. Let V(x,y,,)
=YX, 7, JW(0,,,). For T>0 let vp(x)=(1—cos(Tx)AnTx?. v, is the
density of a probability distribution with characteristic function wy(A)=
max (0,1 —[A)/T).

Let E'(x,y)= | F(x—u,y)vs(u)du and E', %7, Y7 be defined by similar
convolutions. (Weﬁdrop indices a,n in y, , for the sake of notational simplicity.)
From Lemma 3.1, Ch. XVI of [4]
sup, |E,(x, ) =¥ (x, y)l

. ~ 12
§2 sup, |E1T(xa y) —lpT(xa y)l +;‘fsupx

0 -
—a_x_ lﬁ(x, J;)‘
After some elementary calculations it follows that

sup, |E,(x, y) = (x, y)/)/ nl <2 sup, [T (x, ) =7 (x, y)/Y/

+31E, (00, y)— (0, )/ nl+ 12 sup, ¢(x, yY(z TV n).

Combining this with Proposition B and taking T~ﬂ one has

sup (143, 2 1E06 Vo ) — ¥ (X, Yo )V

xeR, acZ ( )

; 1
= 2sup (1432 )BT (3 ) 9T (o, V140 ().

From now on we take T=¢]/n, e=min (&, 6") where & comes from Proposition A,
¢ from lemma 1, and in this lemma 6 =28 Now
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65
gyn  myn 1 i L
ET(x, )=y (%, )/ n= [ ] e
(2 )2 1/7’1 —eVn —mym ltl (2 3)
(ln(tla 2) /10(1‘1: 2))dt2dt1 ‘
and therefore if z< x.
VAET (e, 5) =Y T e )V n— (B (2, 9) =¥ (2, y)/V/ )
1 SV_ ni/i ___(eﬂzlx e—itlz)e—-it:zy
(271) 1[ —aVn —n]/_ltl
0?
( 1) 0t2 (/’{n(tlit2)_2‘0(tlst2)) dtz dtl
2
1 eyn %3 2
e Ve jf{ jf---W(in(fnfz)—io(tl,tz))dfz 24
62
+ [ o Attt
loleyite O3
82
— |z Aolty t)dey pdty
|t2|eVnlé, nl 6t2
=1, +1,+1, say.
We write
02
h(tn[z)zﬁ(ln(tu[2)_/10(1?1,%))
h(ty,t)=(L—e P hit,,t,)+e P (h(t,, 1,)—h(0,1,)) @5
+e PR, 1), )

where f is from Proposition A. From this proposition one has for [t,|<s, |t,| <8:

c c )

iy, ) S —=lde P2 ity 1) —h(0,5)|<—=]t; e 1,
1 2 1/; 1 ( 2 ]/‘

(0, 1,)| S —=e 3,

=

Further |1—e= 1 < Bi7. Implementing these estimates in (2.4) and (2.5) one has

/ eyn )
L= { { 1t1|wT(t1)e_ml| dt,
— &y

_81/—

Eyn s
-+ V( |eo (2 1)|e_ﬂm dlz}dtl

_ &
wE o . am
j T(e‘”“‘——e‘”lz)oz)T(tl)e‘B’ffdt1 f "Btidtz}
—eywltly =y
=0(n~")

uniformly in X, z, «,
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I, can be handled similarly by using Lemma 1 instead of Proposition B and
splitting as follows:

62 2 2

0
atz n(t1> 2) 5 2() (tla 2) /1 (0 t ) a A2 n(O 4 )

In this way one obtains |I,|=0(56"") and in the same way, using exponential
decrease of 1,, one has exponential decrease of |I;|. So |I,|+|L|+|;|=0xn"",
and letting z — - oo one has

VAE (6, 9) =T (6, 1)V n)=0(mY).
In the same way
(ET(x, )~ 47 (x, )V m)=0(n~?)

and from these estimates and (2.2) the theorem follows.

§ 3. Proof of Theorem 1

In this section ¢, ¢, ¢, & are always constants >0, ¢, ¢’ “sufficiently large” and ¢, ¢’
“sufficiently small” which do not depend on n,m,t,s etc. They may vary from
formula to formula but not in the same.

We resume the notation of § 1. We have from (1.6)

{f

% (fE)- H(f))<t}

olf/n j=1
-0, 0012 (3 vep-nu+ 5 x

+ Z (f(fj)—H(f)))§t,T0=r,{"Lr]:n—s T er1>s}

j=n—s+1 j=1

By the Markov property

R (VL S (re)-ngy=r)

ol/nj=1
n 1/0( m

=3 3 SR (E T xsimu-n § =nesen B

m=

Os
B (R,edv, Ty=1) [(R,edu,t>5)

where

Vo &
oV/ni=

R,=

Z () —H().
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The sum on the right side of (3.1) may be splitted as

>+ 3

Om=0 r=1u+1s

YR n

Vi n
)RDINDIE DY

s=0r=0m=0 s=yn+1r

)

Om=0

H[\/J;
llM:

where it is understood that summation begins or ends at the integer part of a
number. The second summand is bounded by

S B>5)=0(Y
s=yYA+1

and the third by

i B(Ty=r)=0(n""7?)

r=yia+1

so in order to prove the theorem it suffices to consider summation over s,7 up to
Vn in (3.1). Clearly m=0 may then be excluded.

Let {,=X,/0, y,=1,—0o. For the moment we assume that ({,,7,) has co-
variance matrix of rank 2, so we can apply theorem 4 of §2. We assumed there d
=1 which means that the chain is aperiodic. However, this is only for notational
convenience and is easily seen to be of no importance. We have
P ( Ve

u

Y X St—u—v, Z T,;=n—s—r)

nj=1

]/—v(t— =0 A om)+O ((1+,1,s,,,)>

for m=1 where /lr.s’m=(n—s~r——ocm)/]/ﬁ
The O-term on the right side of (3.3) does not depend on u,v, so from (3.1)-
(3.3) follows

(3.3)

Mﬁ

-5 5 S (| me-umn

(3.4)
F,(R,edv, T,=r)R(R edu,t,>5)
( (1+ir2sm) 1) ( O_F)P(T >S)}
The theorem then follows from the following three relations
ve yn on 1
Y Y Y 0+, )=0m ) (35)
s=0r=0m=1 m o
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gl va Zn: f 1 ]/7( )
L=U—V), A sm
S:Or:ZO m=1 j]/mlp( am O s )

B(Rsedu,1>5)P,(R.edv, T,=r) (3.6)

—_;—;lp(t’ j‘r,s,m)‘PO(‘E>S)Apu(’1-‘0=i‘)1:O(n‘l/z)

SRR Wit A lofl//(txd By(v>5) P,(Ty=r)=0(n "2
sgo rgo nzlﬁ ’ rsm % ¥ ’ T (37)

everything uniformly in ¢.
Indeed (3.3)-(3.7) imply

P(W i(f('fj)*ﬂ(f))ét>

o) nij=1

(Z Z PO’ZT>S)P(T —r)) j Yt x)dx+0n=1?)

s=0r=0

=$(0)+0(m~72)

So the theorem is proved in the case where the covariance matrix of ({,y) is
nondegenerated. It remains to prove (3.5)-(3.7) for this case.

Proof of (3.5). For 1‘,s§ﬁ

. I/m<c/n for |n—ocm|§2ﬂ
m(l-l_}“fsm) '< (n—oam) ™2 for ocm>n+2ﬁ
n—2Vn—am)~? for ocm<n—2]/ﬁ

From this (3.5) follows by some elementary calculations

Proof of (3.6). Let I (t,u,v) be the interval between t and |/ Ln(t—u—v). We
o

have
n
“/f(|/ —*(t*lzl_l)), ir.s,m)_lp(t:/{r,s,m)
|/ (el + o)) sup<o s Por,s,m)
+1|/ " 1] sup o(x, 4, ;)
m fgliﬁl’ X, Ay s,m)
So

§ 53]

—#lp |/ (t‘“ ’rsm)
s=0r=0m=1

-RB(R,edu, ‘E>S)P (R,edv, Ty=r)

——lp(t,/lr sm Bo(t>9)F, (TO—I)\

1/—
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Ve yn n 1 /7
éZ Z )3 {I‘—f— %Iulsupq)(, Ay s BREdU,7>35) P(Ty=1) (3.8)

=0m=1
l

l/ vlsup<p X, 2y s m) B (t>5) P(R, €dv, T=7)

+jj]/_]/‘1

P(R,edv, Ty=r)
=A,+A4,+A4, say.

lt sup @ 4, s )l B (Ry€du, 7> 5)

xel,(t,u,v)

Obviously sup o(x, Ay <cexp(—ei?) and on {T>s}
xeR

RI<VL S fE)-n(N=Z  say.
0]/; j=1

So

[l B(Ryedu,t>5)=Ey (R 1., JSE(Z1,. )

1 )
=5 EZ7)<cV/ns?)
by Hélder’s inequality. So
1
<c Z Z ( /\I)P(TO—r) Z —exp( eAl ) (3.9)
s5=0r=0

Let now

Ag={m: n—3ﬂ§am§n+]/ﬂ}
Ak:{m:n+kﬂ<am§;z+(k+l)ﬂ}; kz1
={m:n—(k+1)YnSam<n—kyn}; kz3.

Remarking now that for 5,7 <)/n, m<n, me A, one has |4 and for

rsm'
1/~

meA; |4, |2(k—2) one obtains by splitting the sum Z into the sums over
the A’s after some elementary calculations m=1

n

1 .
Zn;exp( ed2 )=0@m~Yy for s,;r<y/n,

m=1

so A, =0(n""?) follows. A, can be handled similarly. We consider now A,.
Let Z be as above and

_ Ve S &) —~T(f)
glnj=1

211

For ful+o| < <—~

Sup o, g Seexp (~o ) exp(—i2, )

xelm{t,u,v)
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Therefrom
Sup (T sup gy, B(R,edn 25 05
telR xelp,(t,u,v) - 3
t
~5(R,edv,z'§’3~l, T0=r) (3.10)
Sc]/7 exp(=edl ) Bie>s) B(To=n)
’ t! i
stgngnm(z >'?, T0=r> <CcE(Z'15,_) (3.11)
|¢] 1
suplthO(Z>~,'c>s>§c (—2/\1>. (3.12)
teR 3 S
Combining (3.10)-(3.12) gives
A<§§i1‘l/n llexp(—edZ )
=cC — — &l sm
= s=0r:0m:1|/m oam 7

. ((siz A 1) (E(Z' 11, )+ BT, =r))).

Splitting the sum over m into subsummations over the A’s one obtains after
some elementary calculations for s,r_é_ﬁ

Ll

So A;=0(n"""2) follows.
Proof of (3.7). For fixed s,r A

exp(—ed?,  )=0(n"1"?).

v, S, m

decreases as m increases and

1 ]/ 1
}'rsm—j‘rsm+1:a——+/1rsm+1 ( 1+—_1)

Sy .S, “/% + 8y m
| —

of)

Vzﬁﬁ 1 /1 ]/1 A ;
Lt sm) =W sm™ Ar sm LA sm
2o 2 [ VA esn) 5 s s )V )

From this one easily derives

(3.13)
-By(t>5)P(T,=r)=0(n""?).

Further

sup (6, x) =Y (t, A Sl — Ay 1) €XP(—847)

x€lAm+ 1, Aml
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and therefore

z Z z rs,m_/{r,s.m+1)w(t7/1r,s,m)

s=0r=0|m=1%
A’rsl

- By(t>s) B(T, —r)— | w(t,x)dx By(z>s) B(T,=r)

VSYl

éC Z Z Z (ir,s,m'—j‘r,s,m-i—l)zexp( gi:sm)

s=0r=0m=1

B(t>5) B (Ty=r)=0(n~"")
Obviously
A1 0
fy@x)dx= | Yt x)+0m™17?),
An —

50 (3.13)—(3.14) entail (3.7).

The case where 2 is degenerated is much more simple. First, if 7 is norandom
it can easily be reduced to the standard Berry-Esseen theorem. If t is nonde-
generated but X has rank 1, then there exists a constant aelR such that {;=ay,
a.s. A typical example for this is if f=1,,. In this special case the statement of
theorem 1 (with fixed starting point) has been proved by Landers and Rogge in
[6] (theorem 1). Their proof can easily be adapted to the general case where (;
=ay,. We omit the details.

§ 4. Proof of Theorem 2

Rosenblatt ([10], VIL3, Lemma 1) obtained the result that a Markov chain is
strongly mixing, i.e. lim a(n)=0, if and only if

n— 00

sup{ ), n()IE;(f ) — TN f: 1 =R, | ], =1}

el
goes to 0 as n — o0. His proof easily gives the following stronger statement:

Lemma 2. a(m)<7 sup I(E.(f() - (f))

H Sleoz1

||/\

sup |P({o€4, ¢, €B)—n(A)n(B)
A,BCI

<2a(n).

Proof of Theorem 2. (I) It is assumed that ) nPa(n)<oo for some p=0. Let 4,
n=1
={¢;#0 for j=n+1, n+2,...,2n}. For any starting probability u

P(A)= Y B(&,=0)B(S>2n—m)+PB(S>2n).
1

m=
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Taking p=4, and pu=1II one obtains
[B(S>2n)—P.(S>2n)|

(R4

n

)= B A +B(S>n) Y |B(E,=0)—r(0).

m=1
Now |B(4,)— Py(A,) Sa(n)/n(0) and |By(&,=0)—n(0) Sa(m)z(0). So for g,
0=q=p,

7(0) Y 1|By(S>2n)— Py(S>2n)|
n=1

=< i nlo(n) + (i oc(n)) (i anO(S>n)).

n=1 n=1 n=1

So it follows that if Eo(S?7)<oo then E (S97')<o0. On the other hand it is
well known that for any r=0 E,(S"*!)<oco if and only if E (S <oco. So it
clearly follows that E,(S?*?)< co.

(IT) Let us prove the converse, so we assume E (S?*?)< oo for some p=0 or,
what is the same, E;(S7*1) < c0.

We use the Pitman coupling technique (see [8]), so let ¢,,& be two
independent chains with transition probabilities p;;. We write P. for the law of
the pair (£,,£)). Let R=inf{n=0: £, =0, &, =0} andlet f: I > IR, | f||,=1. Asin
Pitman [&]

E(fE)—Ex(fEN=2E,, n(RZn)

H(E.(fEN— TN S2B,, g (R2=n).

SO

If Ep(S**!)<co Pitman proved in [8] that Ep, ;(R**') <o so
Y nPP;, f(Rzn)<oo and Y nPo(n)< oo follows from Lemma 2.

n=1 n=1
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