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1. It was shown in [8] that under the condition (sup B) (see Lemma 1 in Sect.
3.) the weak convergence of a sequence of semimartingales, in particular -
local martingales, to a continuous Gaussian martingale holds if and only if the
conditions (A) and (C) hold (Lemma 1).

The aim of the present paper is to show by using the result of [8] under
the assumption of uniform integrability of jumps of local martingales (con-
dition (p) in Theorem 1), that the same convergence for local martingales holds
if and only if a convergence in probability of corresponding quadratic va-
riations (condition (y) in Theorem 1) takes place.

It should be noted that some particular cases of this result may be found in
[1, 3, 11, 12]. For example, Theorem 1 is the direct generalization of a result in
[3] (see Corollary 2 in Sect. 6).

The condition (p) is not used in Theorem 2 (Sect. 9.), but we give an
example (Sect. 8) which shows that the condition (p) cannot be essentially
weakened. '

2. Let (Q,%,P) be a complete probability space, F'=(%")},.,, n=1 and F
=(%),», be non-decreasing right continuous family of c-algebras #"c % &,
<% n=1, t=0 such that the g-algebras 4" and %, contain the P zero sets
from &

Let M*=(M},#/),»,, nz1l be local martingales with M3=0, n=1 and
trajectories in the measurable space (D,2) with Skorokhod topology [2, 13],
and M =(M,, %), , be continuous Gaussian martingale with M,=0.

Every local martingale M" admits a unique decomposition: M" =M™ + M"%,
where M™=(M™, #"),., is a continuous local martingale and M™
=(M™M FM",,, is a purely discontinuous local martingale. It is well known that
M™ admits the representation in the form of the stochastic integral

M= | xd(u—v) M
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by “martingale” measure (u"—v"), where y" is the integer-valued random
measure of jumps M" v* is its dual predictable projection (or compensator)
with respect to F", [4, 6], and R,=R\{0}.

The local martingal M" has the canonical semimartingale representation:

Mr=Bl+MP +{ [ xdp'+{ | xdu"—v" (2)

0 |x|>1 0 x|=1

Since (see [6]) for each ¢t >0

[ x*(L+x)~tdv*<oo  (P-as.)
Ro

O ey

then it follows from (1) and (2) that the predictable process B"=(B, #"),, is
defined by the formula: . '
Bi=—f | xdv. (3)
0 |x|>1
In addition, the process B" admits the decomposition: B"=B™+ B™ with B/“=
— Y [ xv'({s}dx). It follows from (3) that the variation V;(B™) of the

O<s=r|x|>1

function (B;“’)@0 on the interval [0, T] is defined by the formula:

VpB)= 3 | [ xv({t},dx)| )

0<t=T |x|>1

and the variation of the function B"=(Bj), , has the property

i
VB[ | Ixldv
0 |x|>1
Let [M* M™]=(LM", M"],, #") be the quadratic variation of the local mar-
tingale M":
[M", M"],={M™) + 3 (AM})?,
O<s=t

where {M™>=({M"™,, #"),, is the quadratic characteristic of M™, i.e. {M™)
is a non-decreasing predictable process such that the process (M™)* —(M™) is
a local martingale, and AM"=M"—M" , s>0. For a continuous Gaussian

martingale M, we have : B
(M, M],=<{M» =EM;.

We shall denote A(t)=EM?. We shall denote by the symbol: M"—£-> M the
fact that the distributions of local martingales M", n=1 converge weakly to the
distribution of M. The symbol —2— denotes the convergence in probability.

3. The following result is a particular case of corresponding statements in [8]
and [7].
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Lemma 1. a) Let M", n=1 be local martingales with M{=0, n=1 and trajec-
tories in (D, 9), M be a continuous Gaussian martingale with M,=0 and A(t)
—EM>.

Under the condition

§

o xdv

0 |x|>1

50

{(sup B): sup

O0=s=t

H t>07

the convergence M"—%>M holds if and only if the following conditions take
place: for t>0 and ¢€(0, 1]

t

A): | | av-1>0,

0 |x|>¢

(©: M™y,+[ | xPdvi— 3 (| o({s},dx)*—> A0).

0 |x|=e O0<sst |x|=Ze
b) Condition (A) is equivalent to the condition

(A*): sup [AM"—2->0, >0

O<s=t

¢) Under condition (A), condition (C) is equivalent to the condition

(C¥): (M™+ Y (AM"— [ xv({s},dx)?—2> A(1), t>0.

0<s st FIES!

4. The main result of the present paper is the following

Theorem 1. Let M", n=1 be local martingales with M% =0, n=1 and (rajectories
in (D, 9), M be a continuous Gaussian martingale with M ,=0 and A(t)=EM}.

Let the following condition be satisfied:

(p): for each t>0 the family of random variables ( sup |AM?)),
nz1 is uniformly integrable. 0<sst

Then the convergence M"—<~ M holds if and only if the following condition
takes place:

(y): [M",M"],—2> A(1), >0.

5. For the proof of this theorem, we need the following result.

Lemma 2. Let X"=(X}, #"),50, Y"=(Y",#"),», be random processes with X}
=0, YJ=0, n=1 and trajectories in (D, B).
Assume X", n21 are non-negative processes and Y", n=1 are non-decreasing

processes such that
EX"<EY" )]

for any finite stopping time t with respect to F".
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For any finite stopping time T with respect to ﬂ F", let the family of random

variables ( sup AY"), n=1 be uniformly mtegrable
O<s=T
Then by n— oo »
Y250 = sup X"—2-0. (6)
0<t<T
Proof. Under the assumption (5), we have the Lenglart-Rebolledo inequality
(see [10, 11]) stating that for arbitrary a, b>0:

P(sup X7z a)<1/aE(Y] A(b+sup AY™)+P(Y)=D).
(ST

t=T

If Y7250, then

hm P(supX”>a)<b/a+11m Esup4Y”.

t=T n t=T

Since sup 4Y"< Y}, we have sup 4Y"—*—-0. By virtue of uniform integrability
t=T t=T

of the family ( sup 4 ), nz1

0<t=sT

ImE sup 4Y"=0.

n 0<t=T

Therefore, hm P(sup X?=a)<b/a.
t=T
The requlred assertion (6) follows from this inequality by virtue of the
arbitrariness of the constant b>0.

6. Proof of Theorem 1. The sufficiency of the conditions (p) and (y) considered
above will follow from Lemma 1 and following implications:

5 (p, ) (p, 7 A) (p, 7, A, sup B) ™

= (p,7y,A,supB, C) (p, M"—£, M) (where Lemma 1 enters in {4})

and the necessity of the condition (y) will follow from the implications:

(p,M —»M) Y omM—Lma (p, M"LM, A, sup B) .
2 (. AsupB,C) 2 (p, A, supB,y) = (p,). ®
To prove (7) and (8), we shall show that
(¥) = (A), ©)
(A, p) = (sup B) (10)

and under the conditions (A) and (p)

¥) = (O). (11)



Central Limit Theorem for Local Martingales 315

The validity of (9) follows from the following fact. Since the functions
[M" M"], and A(t) are non-decreasing and the function A(¢) is continuous,
then (see Lemma 1 in [9])

(1) = sup |[M", M"],— A(9)] 250, 10,

s=t
Hence, (y) = sup (AM")?-2>0, ie. (y) = (A*): Now, the implication (9) follows
s<t
from the equivalence of the conditions (A) and (A*) (see Lemma 1, b)).
In order to prove (10) we shall introduce the following notations:

! t
Xp={ [ dw, Xj= j { dv, zZr=] | Ixldu-
0 |x|>1 0 jx|>1 0 |xj>1

Under condition (A) X"—%-0, t>0. Therefore, by Lemma 2 X" 20, t>0.
Since for any 6>0(Z > )= (X} =1),

(A) = Z'—250, t>0. (12)

The processes Z"=(Z], #",», and V(B")=(V(B"), #).», satisfy the con-
ditions of Lemma 2:

EV.(B")<E j { |x|dv'=EZ"
0 |x|>1
for any finite stopping time t with respect to F" and the family ( sup 4Z%),
O<s£t

nz1 is uniformly integrable for each t>0 because AZ7<|4AM?| and the con-
dition (p) takes place. Therefore from (12) and Lemma 2, it follows that

(A,p) = ViB) 20, >0,
Now, the inequality sup |B?| ZV,(B" implies the validity of implication (10).
O0=s=t

To prove (11) we shall use the fact that under the condition (A) the con-
ditions (C) and (C*) are equivalent. Since

M™5+ 3, (AME— | xv"({s},dx))?=[M", M"],+J],
O<s=t Ix|=1

where

Ji= Y (] xvi({shdx)*—2 Y AM? | xv'({s},dx),

O<sst |x[s1 O<s<t x| €1
to proove (11) it 1s sufficient to show that
A,p) = J'—250, >0 (13)
The processes M", n=1 are local martingales. Because of that

[ xv*({s},dx)=0 (P-as), s>0
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(see [4, 6]). By virtue of this equality and (4) we have

Wi Y (AV,(B")2+2 sup |AM?|V,(B™)
O<s=t O<s=t
<V2(B")+2 sup |AM"|V,(B").

O<s=t

(14)

By the implication proved above (A, p) = V,(B")—"-0, t>0 and by virtue of
the inequality V,(B")<V,(B" and the equivalence of conditions (A) and (A*), it
follows from (14) that |J"|—2-0, t>0.

Thus, the implication (11) holds.

Now, we can prove the implications (7) and (8).

The implications {1}, {2} and {3} follow from (9), (10) and (11) respectively.
The implication {4} follows from Lemma 1. In [&], it was shown (Lemma 1)

that
M"—2Z,M = (A)

This fact implies the implication {5}. The implication {6} follows from (10),
and the implication {7} follows from Lemma 1. The implication {8} follows
from (11), and implication {9} is obvious.

7. Corollary 1 ([7, 10]). Let M", n=1 be continuous local martingales, M =0,
nz1and M is a continuous Gaussian martingale, M ,=0.
Then
M—Zs M < (MY, (M, t>0.

Corollary 2 ([3, 12]). Let for every n=1 the sequence &"=(¢(,,, FD), 1=k
form a martingale-difference, i.e. E|¢, | < oo, E(& | F" )=0, ffC/z"g .S
and Z,"=(¢, Q).

[rt]

Put &y, =0 and M7= ) ¢,,, 0<t<1. If the family of the random variables
k=0
(max|&,|), n=1 is uniformly integrable then (W be a Wiener process)
k=n

<n
gzn
n

[nt]
M—EZW e Y & 5, 051

8. It is well known that the uniform integrability condition (p) is equivalent to
the simultaneous realization of the two following conditions:
{p,): for every t>0 the family of the random variables
( sup |AMT)), n=1 is uniformly bounded, i.e.

O<s=st

supE sup |[AM? < 0; (15)
O<ssr
(p,): for every t>0 the family of the random variables
( sup |4AM?), n=1 is uniformly continuous, ie.
O<s=t
supE sup |[AMY1(4)—0, AeZF
O<s=t

by P(4)—0
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It was shown in [5] that under the condition (p,) the implication

M"—£5 M = ()
takes place.
Now, we shall give an example showing that under the condition {(p,) the
inverse implication (y) = M"—%£> M, generally speaking, is not true. Thus in
Theorem 1 the condition (p) cannot be weakened to the condition (p,).

Example. Let (¢,,), 1=k=<n, n=2 be an array of independent random variables
with P(§,,=n)=1/n?, P(&,,=—1/n(1—n"?)=1—-n""2

[nft’]ut Flr=0(.,,jSk) and Fo=(6,Q) and F'=75,, 0=<t<1. Let M;
= Z £, with &,,=0. It 1s clear that M"=(M?, #"), 0=t <1 is a martingale for

Jjn?

every nz2.
Since sup[AM"|< Z 1&,,] and Z E |£,,]=2, then in the case under con-

k=1
s1derat1on the condltlon (p,) holds. A simple calculation shows that [M", M"],

= 5 N 0. T hus, if Theorem 1 holds then M" £, 0 for every te [0, 1]
kn t Y
k=1

However, it is not difficult to show that M"—*— —t.
It should be noted that in this example

[nt]

Bi=— % E&,J(,l>1)=—[ntl/n— —t
k=1

and consequently the condition (sup B) does not hold. On the contrary, the
conditions (A) and (C) take place. Thus this example shows that the condition
(sup B) in Lemma 1 is essential.

9. In the proof of Theorem 1 it was shown that (p,y) = V,(B")—2-0, t>0.
Consequently, we have the following implication:

(p.7) = sup [BY|+V,(B")—=0, (>0

0<s=<t

Let us consider the condition

(V): sup |[B¥|+V,(B")—2>0, >0.

O0<s=rt

It is clear that (V) = (sup B) and under conditions (A) and (V) the equivalence
(11) holds. :
Hence,
(V,y) = (A,supB, C) = M" £ M.

On the other hand,
(V,M"—%> M) = (V,A,C) = (y).

Thus, we obtain the following
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Theorem 2. Let M", n21 be local martingales with M% =0, n>1 and trajectories
in (D,%) and M is a continuous Gaussian martingale with M,=0 and A(t)
—EM?.
Under the condition (V)
M"—Z5 M < (y).
Corollary 3. If the local martingales M", nz=1 are quasi-left continuous
processes then under condition (sup B)

M —Z5M < (y).

Remark [S]. The implication M"—£>M = (y) takes place under the condition:
for every t>0
lim sup P (V,(B")=b)=0.

b—o n

10. Remark. Let M", n=1, be local martingales and let the condition (p) be
satisfied. Then for each 1>0

sup [M"|—250 < [M", M"],—20.

s=t
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