Skip to main content
Log in

In situ observation of phase separation processes in gelling alkoxy-derived silica system by light scattering method

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The investigation of phase separation processes induced by polymerization reactions of tetramethoxysilane (TMOS) was attempted by a time-resolved light scattering method for TMOS-formamide-water system under the acid-catalyzed condition. Since the early stage of the phase separation exhibits very fast kinetics and weak scattering intensity, the experimental set-up was designed so as to reduce the experimental error and to obtain higher time resolution by using a laser beam expander. For the gels whose morphologies are ‘interconnected structure’ and ‘aggregates of particles,’ it was experimentally found that the wavelength of the concentration fluctuation in the early stage of phase separation was time-independent and its amplitude grew exponentially with time. This suggests that these samples phase-separate by spinodal decomposition mechanism. In the later stages of phase separation, the coarsening process and the following structure-freezing process by gel-network formation were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yamane, in Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes, ed. L.C. Klein (Noyes, Park Ridge, New Jersey, 1988), p. 200.

    Google Scholar 

  2. L.L. Hench and G. Orcel, in Better Ceramics Through Chemistry II, eds. C.J. Brinker, D.E. Clark and D.R. Ulrich, vol. 73 (MRS, Pittsburgh, 1986), p. 35.

    Google Scholar 

  3. M. Toki, S. Miyashita, T. Takeuchi, S. Kanbe, and A. Kochi, J. Non-Cryst. Solids, 100 (1988) 479.

    Google Scholar 

  4. H. Dislich, in Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes, ed. L.C. Klein (Noyes, Park Ridge, New Jersey, 1988), p. 50.

    Google Scholar 

  5. S. Sakka and K. Kamiya, J. Non-Cryst. Solids, 42 (1980) 403.

    Google Scholar 

  6. S. Sakka, in Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes, ed. L.C. Klein (Noyes, Park Ridge, New Jersey, 1988), p. 140.

    Google Scholar 

  7. E. Matijević, in Ultrastructure Processing of Ceramics, Glasses, and Composites, eds. L.L. Hench and D.R. Ulrich (Wiley, New York, 1984), p. 334.

    Google Scholar 

  8. W. Stöber, A. Fink, and E. Bohn, J. Colloid Interf. Sci., 26 (1968) 62.

    Google Scholar 

  9. A.K. Helden, J.W. van Jansen, and A. Vrij, J. Colloid Interf. Sci., 81 (1981) 354.

    Google Scholar 

  10. R.D. Shoup, in Colloid and Interface Science, III (Academic Press, New York, 1976), p. 63.

    Google Scholar 

  11. For the dispersed system, detailed but not in situ studies for the formation of monodispersed particles according to Stöber process [8] are carried out by Bogush et al. [12, 13].

  12. G.H. Bogush and C.F. Zukoski IV, in Ultrastructure Processing of Advanced Ceramics, eds. J.D. Mackenzie and D.R. Ulrich (Wiley, New York, 1988), p. 477.

    Google Scholar 

  13. G.H. Bogush, G.L. Dickstein, P. Lee, and C.F. Zukoski IV, in Better Ceramics Through Chemistry III, eds. C.J. Brinker, D.E. Clark and D.R. Ulrich (North-Holland, New York, 1988).

    Google Scholar 

  14. H. Kaji, K. Nakanishi, and N. Soga, submitted to J. Non-Cryst. Solids.

  15. P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, and T. Yamamuro, J. Amer. Ceram. Soc., 75 (1992) 2094.

    Google Scholar 

  16. N. Tanaka, N. Ishizuka, K. Hosoya, K. Kimata, H. Minakuchi, K. Nakanishi, and N. Soga, submitted to Anal. Chem.

  17. H. Kaji, K. Nakanishi, and N. Soga, J. Sol-Gel Sci. and Technol., 1 (1993) 35.

    Google Scholar 

  18. F.S. Bates and P. Wiltzius, J. Chem. Phys., 91 (1989) 3258.

    Google Scholar 

  19. R.S. Stein and J.J. Keane, J. Polym. Sci., 17 (1955) 21.

    Google Scholar 

  20. T. Hashimoto, M. Itakura, and H. Hasegawa, J. Chem. Phys., 85 (1986) 6118.

    Google Scholar 

  21. Y.C. Chou and W.I. Goldberg, Phys. Rev. A, 20 (1979) 2105.

    Google Scholar 

  22. Laser Speckle and Related Phenomena, ed. J.C. Dainty, Topics in Applied Physics, vol. 9 (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  23. Y.C. Chou and W.I. Goldberg, Phys. Rev. A, 23 (1981) 858.

    Google Scholar 

  24. H. Kaji, K. Nakanishi, and N. Soga, submitted to J. Non-Cryst. Solids.

  25. R.A. Assink and B.D. Kay, J. Non-Cryst. Solids, 99 (1988) 359.

    Google Scholar 

  26. H. Kaji, K. Nakanishi, and N. Soga, in preparation.

  27. T. Hashimoto, K. Sasaki, and H. Kawai, Macromolecules, 17 (1984) 2812.

    Google Scholar 

  28. R.L. Scott, J. Chem. Phys., 17 (1949) 268.

    Google Scholar 

  29. D. Patterson, Polym. Eng. and Sci., 22 (1982) 64.

    Google Scholar 

  30. A. Onuki and T. Hashimoto, Macromolecules, 22 (1989) 879.

    Google Scholar 

  31. T. Dobashi, M. Nakata, and M. Kaneko, J. Chem. Phys., 72 (1980) 6693.

    Google Scholar 

  32. P.J. Flory, Principles of Polymer Chemistry (Cornell University, Ithaca, New York, 1971).

    Google Scholar 

  33. P.-G. de Gennes, Scaling Concept in Polymer Physics (Cornell University Press, Ithaca, New York, 1979), Chapter 5.

    Google Scholar 

  34. J.W. Cahn, J. Chem. Phys., 42 (1965) 93.

    Google Scholar 

  35. S. Katano and M. Iizumi, Phys. Rev. Lett., 52 (1984) 835.

    Google Scholar 

  36. S. Komura, K. Osamura, H. Fujii, and T. Takeda, Phys. Rev. B, 31 (1985) 1278.

    Google Scholar 

  37. T. Hashimoto, M. Itakura, and N. Shimidzu, J. Chem. Phys., 85 (1986) 6773.

    Google Scholar 

  38. K. Binder and D. Stauffer, Phys. Rev. Lett., 33 (1974) 1006.

    Google Scholar 

  39. I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids, 19 (1961) 35.

    Google Scholar 

  40. E.D. Siggia, Phys. Rev. A, 20 (1979) 595.

    Google Scholar 

  41. H. Hasegawa, T. Shiwaku, A. Nakai, and T. Hashimoto, in Dynamics of Ordering Processes in Condensed Matter, eds. S. Komura and H. Furukawa (Prenum Press, New York, 1988).

    Google Scholar 

  42. T. Hashimoto, M. Takenaka, and T. Izumitani, J. Chem. Phys., 97 (1992) 679.

    Google Scholar 

  43. K. Yamanaka and T. Inoue, Polymer, 30 (1989) 662.

    Google Scholar 

  44. K. Yamanaka, Y. Takagi, and T. Inoue, Polymer, 30 (1989) 1839.

    Google Scholar 

  45. K. Yamanaka and T. Inoue, J. Mater. Sci., 25 (1990) 241.

    Google Scholar 

  46. T.M. Rogers and R.C. Desai, Phys. Rev. B, 39 (1989) 11956.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaji, H., Nakanishi, K., Soga, N. et al. In situ observation of phase separation processes in gelling alkoxy-derived silica system by light scattering method. J Sol-Gel Sci Technol 3, 169–188 (1994). https://doi.org/10.1007/BF00486556

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00486556

Keywords

Navigation