Skip to main content
Log in

Marine algae as a co2 sink

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The most effective ways to reduce CO2 emissions are to improve the energy efficiency of each economic sector and to reduce the cutting of tropical and temperate forests around the world. These options, however, may not fully reach their technical and economic potential due to various political and socioeconomic barriers. Other more innovative and less well developed mitigation measures therefore will be required. The most practical of these is to increase CO2 sinks through photosynthesis in both standing tree biomass and in ocean primary producers. In this paper, the use of marine algae as CO2 sinks is reviewed from a technical, engineering/economic, and environmental perspective. Two open ocean options are considered for large-scale CO2 mitigation: the use of phytoplankton through Fe fertilization and macroalgal (kelp) farms, which can be used for both C sequestering and energy production. It has been estimated that these two approaches can sequester from 0.7 to 3 Gt C yr−1 from the atmosphere at an estimated cost of $5 to 300 t−1 C yr−1. Other options currently under study are also mentioned. Numerous questions remain to be answered pertaining to the use of both microalgae and macroalgae for CO2 assimilation before credible estimates of costs of C removal can be made for either system. In addition, there are several key environmental issues raised by the use of algae. A detailed discussion of these variables, including cost estimates, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpert, S.B., Spencer, D.F., and Hidy, G.: 1992, ‘Biospheric options for mitigating atmospheric carbon dioxide levels’, EPRI Discussion Paper.

  • Banse, K.: 1990, Limnol. Oceanogr. 35, 772.

    Google Scholar 

  • Banse, K.: 1991, Limnol. Oceanogr. 36 (in press).

  • Barnola, J.M., Raynaud, D., Korotkevich, Y.S., and Lorius, D.: 1987, Nature 329, 408.

    Google Scholar 

  • Broecker, W.S. 1982a, Prog. Oceanogr. 11, 151.

    Google Scholar 

  • Broecker, W.S. 1982b, Geochim. Cosmochim. Acta 46, 1689.

    Google Scholar 

  • Broecker, W.S. 1990, Global Biogeochem. Cycles 4, 3.

    Google Scholar 

  • Buma, A.: 1990, Global Biogeochem. Cycles 4, 5.

    Google Scholar 

  • Charles, C.D. and Fairbanks, R.C.: 1990, in U. Bleil and J. Thiede (eds.), Geological History of the Polar Oceans: Arctic vs Antarctic. Kluwer Academic Publishers, Dordrecht, pp. 519–539.

    Google Scholar 

  • Cullen, J.: 1991, Limnol. Oceanogr. 36 (in press).

  • DeAngelis, M., Barkov, N.I., and Petrov, V.N.: 1987, Nature 325, 318.

    Google Scholar 

  • Druffel, E.R.M. and Williams, P.M.: 1990, Nature 347, 172.

    Google Scholar 

  • Dugdale, R.C. and Wilkerson, F.P.: 1990, Global Biogeochem. Cycles 4, 13.

    Google Scholar 

  • El-Sayed, S.Z.: 1985, ‘Plankton of the Antarctic Seas’, in W.R. Siegfried, et al. (eds.), Aulntarctic Nutrient Cycles and Food Webs, Springer-Verlag, New York, pp. 135–153.

    Google Scholar 

  • Frost, B.: 1991, Limnol. Oceanogr. 36 (in press).

  • Goldman, J.C.: 1988, ‘Spatial and temporal discontinuities of biological processes in pelagic surface waters’, in B.J. Rothschild (ed.), Towards a theory on apelagicheory on Biological and Physical Processes in the World Ocean, Kluwer Academic Publishers, Dordrecht, pp. 273–296.

    Google Scholar 

  • Grobe, H., Mackensen, A., Hubberten, H.-W., Spiess, V., and Fütterer, D.K.: 1990, in U. Bleil and J. Thiede (eds.), Geological History of the Polar Oceans: Arctic vs Antarctic, Kluwer Academic Publishers, Dordrecht, pp. 539–572.

    Google Scholar 

  • Hudson, R.J.M. and Morel, F.M.M.: 1990, Limnol. Oceanogr. 35, 1002.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC): 1990, Climate Change: The IPCC Scientific Assessment, J.T. Houghton, G.J. Jenkins, and J.J. Ephraumus (eds.), Cambridge University Press, New York.

    Google Scholar 

  • Joos, F., Sarmiento, J.L., and Siegenthaler, U.: 1991, Nature 349, 772.

    Google Scholar 

  • Keir, R.S.: 1988, Paleoceanography 3, 413.

    Google Scholar 

  • Knox, F. and McElroy, M.S.: 1984, J. Geophys. Res. 89, 4629.

    Google Scholar 

  • Labeyrie, L.D. and Duplessy, J.-C.: 1985. Palaeogr. Palaeoclimatol. Palaeoecol. 50, 217.

    Google Scholar 

  • Legrand, M., Feniet-Saigne, C., Saltzman, E.S., Germain, C., Barkov, N.I., and Petrov, V.N.: 1991, Nature 350, 144.

    Google Scholar 

  • Martin, J.H.: 1990, Paleoceanography 5, 1.

    Google Scholar 

  • Martin, J.H. and Fitzwater, S.E.: 1988, Nature 331, 341.

    Google Scholar 

  • Martin, J.H. and Gordon, R.M.: 1988, Deep-Sea Res. 35, 177.

    Google Scholar 

  • Martin, J.H., Gordon, R.M., Fitzwater, S.E., and Broenkow, W.W.: 1989, Deep-Sea Res. 36, 649.

    Google Scholar 

  • Martin, J.H., Fitzwater, S.E., and Gordon, R.M.: 1990a, Global Biogeochem. Cycles 4, 5.

    Google Scholar 

  • Martin, J.H., Gordon, R.M., and Fitzwater, S.E.: 1990b, Nature 345, 156.

    Google Scholar 

  • Mitchell, B.G., and Holm-Hansen, O.: 1991, Deep-Sea Research, 38, 981.

    Google Scholar 

  • Mitchell, B.G., Brody, E.A., Holm-Hansen, O. McClain, C., and Bishop, J.: 1991, Limnol. Oceanogr., 36 (in press).

  • Moore, B. and Bolin, B.: 1987, Oceans, 29, 9.

    Google Scholar 

  • Mortlock, R.A., Charles, C.D., Froelich, P.N., Zibello, M.A., Saltzman, J., Hays, J.D., and Burckle, L.H.: 1991, Nature 351, 220.

    Google Scholar 

  • National Academy of Science, National Academy of Engineering, Institute of Medicine (NAS/NAE/IOM): 1991. National Policy Implications of Greenhouse Warming: Report of the Mitigation Panel, National Academy Press, Washington DC, pp. 10.9–10.10.

    Google Scholar 

  • Neftel, A., Oeschger, H., Schwander, J., Stauffer, B., and Zumbrunn, R.: 1982, Nature 295, 220.

    Google Scholar 

  • Neushul, M.: 1991, ’Algae refossilization of atmospheric carbon dioxide,’ EPRI Report (EAK7-401) Electric Power Research Institute, Palo Alto, CA.

    Google Scholar 

  • Orr, J.C. and Sarmiento, J.L: 1992, Water, Air, and Soil Pollution (this volume).

  • Pedersen, T.F., Pickering, M., Vogel, J.S., Southon, J.N., and Nelson, D.E.: 1988, Paleoceanography 3, 157.

    Google Scholar 

  • Peng, T-H. and Broecker, W.S.: 1991, Nature 349, 227.

    Google Scholar 

  • Price, N.M., Anderson, L.F., and Morel, F.M.M.: 1991, Deep-Sea Research 38, 1361.

    Google Scholar 

  • Ritschard, R., Berg, V., and Killeen, S.: 1981, ‘Proceedings of a workshop on environmental impacts of marine biomass’, Gas Research Institute (GRI-80.0076), Chicago, IL.

    Google Scholar 

  • Sarmiento, J.L. and Toggweiler, L.R.: 1984, Nature 308, 621.

    Google Scholar 

  • Sarmiento, J.L., Herbert, T.D., and Toggweiler, J. R.: 1988, Global Biogeochem. Cycles 2, 115.

    Google Scholar 

  • Sarmiento, J.L. and Orr, J.C.: 1991, Limnol. Oceanogr. 36 (in press).

  • Sarnthein, M., Winn, K., and Zahn, R.: 1987, ‘Paleoproductivity of oceanic upwelling and the effect on atmospheric CO2 and climatic change during glaciation times’, in W.H. Berger and L.D. Labeyrie (eds.), Abrupt Climatic Change, D. Reikel, Hingham, MA, pp. 331–337.

    Google Scholar 

  • Siegenthaler, U. and Wenk, T.: 1984, Nature 308, 624.

    Google Scholar 

  • Spencer, D.F.: 1991, ‘Open ocean macroalgal farms for CO2 mitigation and energy production’, Proceedings of IEA Conference on Technology Responses to Global Environmental Challenges, 6–8 November 1991.

  • Sugimura, Y. and Suzuki, Y.: 1988, Mar. Chem. 24, 105.

    Google Scholar 

  • Sunda, W.G., Swift, D.G., and Huntsman, S.A.: 1991, Nature 351, 55.

    Google Scholar 

  • Tans, P.P., Fung, I.Y., and Takahashi, T.: 1990, Science 24, 1431.

    Google Scholar 

  • Toggweiler, J.R. and Sarmiento, J.L.: 1985, ‘Glacial to interglacial changes in atmospheric carbon dioxide: The critical role of ocean surface water in high latitudes’, in E.T. Sundquist and W.S. Broecker (eds.), The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present, Geophys. Monogr. Ser. 32, AGU, Washington, DC, pp. 163–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritschard, R.L. Marine algae as a co2 sink. Water Air Soil Pollut 64, 289–303 (1992). https://doi.org/10.1007/BF00477107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00477107

Keywords

Navigation