Skip to main content
Log in

Incubation of corn coleoptiles with auxin enhances in-vitro fusicoccin binding

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Binding of fusicoccin (FC) to microsomal preparations of corn (Zea mays L.) coleoptiles is enhanced after incubation of the tissue with indole-3-acetic acid (IAA). Treatment of the kinetic data according to Scatchard shows that the enhancement is a consequence of an increase in the number of high-affinity FC-binding sites without changes of their KD. The minimal effective concentration of IAA is 10-7 M; above 10-5 M the effect declines. The stimulation is insensitive to protein-synthesis inhibitors (cycloheximide and puromycin). The same effect is observed with the synthetic auxins 2,4-dichlorophenoxyacetic acid and naphtalene-1-acetic acid while it is abolished by the auxin antagonists naphtalene-2-acetic acid and p-chlorophenoxyisobutyric acid. Since the above effect is only observed with intact tissue and not after incubation of IAA with microsomal preparations, a direct interaction of IAA with the FC-binding sites is ruled out and an alternative mechanism must be sought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

FC:

fusicoccin

[3H]FC:

3H-labeled dihydrofusicoccin

IAA:

indole-3-acetic acid

1-NAA:

naphtalene-1-acetic acid

2-NAA:

naphtalene-2-acetic acid

PCIB:

p-chlorophenoxyisobutyric acid

References

  • Aducci, P., Ballio, A., Federico, R., Scalorbi, D. (1979) Enhancement of fusicoccin binding to corn coleoptiles plasma membranes by in vivo treatment with indole-3-acetic acid. G. Bot. Ital. 113, 191

    Google Scholar 

  • Aducci, P., Ballio, A., Fiorucci, L., Simonetti, E. (1984b) Inactivation of solubilised fusicoccin-binding sites by endogenous plant hydrolases. Planta 160, 422–427

    Google Scholar 

  • Aducci, P., Coletta, M., Marra, M. (1984a) An improved Scatchard analysis of fusicoccin-binding to maize coleoptile membranes. Plant Sci. Lett. 33, 187–193

    Google Scholar 

  • Aducci, P., Crosetti, G., Federico, R., Ballio, A. (1980) Fusicoccin receptors. Evidence for endogenous ligand. Planta 148, 208–210

    Google Scholar 

  • Ballio, A., Carilli, A., Santurbano, B., Tuttobello, L. (1968) Produzione di fusicoccina in scala pilota. Ann. Ist. Sup. Sanità 4, 317–322

    Google Scholar 

  • Ballio, A., Federico, R., Pessi, A., Scalorbi, D. (1980) Fusicoccin binding sites in subcellular preparations of spinach leaves. Plant Sci. Lett. 18, 39–44

    Google Scholar 

  • Ballio, A., Federico, R., Scalorbi, D. (1981) Fusicoccin structure-activity relationships: in vitro binding to microsomal preparations of maize coleoptiles. Physiol. Plant. 52, 476–481

    Google Scholar 

  • Buckhout, T.J., Young, K.A., Low, P.S., Morré, D.J. (1981) In vitro promotion by auxins of divalent ion release from soybean membranes. Plant Physiol. 68, 512–515

    Google Scholar 

  • Cleland, R.E. (1976) Fusicoccin induced growth and hydrogen ion excretion of Avena coleoptiles: relation to auxin respones. Planta 128, 201–206

    Google Scholar 

  • Dohrmann, U., Pesci, P., Cocucci, S.M., Marrè, E. (1977) Stimulating effect of fusicoccin on K+-activated ATPase in plasmalemma preparations from higher plant tissues. Plant Sci. Lett. 8, 91–98

    Google Scholar 

  • Hertel, R. (1983) The mechanism of auxin transport as a model for auxin action. Z. Pflanzenphysiol 112, 53–67

    Google Scholar 

  • Jacobs, M., Hertel, R. (1978) Auxin binding to subcellular fractions from Cucurbita hypocotyls: in vitro evidence for an auxin transport carrier. Planta 142, 1–10

    Google Scholar 

  • Kutschera, U., Schopfer, P. (1985a) Evidence against the acid-growth theory of auxin action. Planta 163, 483–493

    Google Scholar 

  • Kutschera, U., Schopfer, P. (1985b) Evidence for the acid-growth theory of fusicoccin action. Planta 163, 494–499

    Google Scholar 

  • Lado, P., Pennacchioni, A., Rasi Caldogno, F., Russi, S., Silano, V. (1972) Comparison between some effects of fusicoccin and indole-3-acetic acid on cell enlargement in various plant materials. Physiol. Plant Pathol. 2, 75–85

    Google Scholar 

  • Lees, M.B., Paxman, S. (1972) Modification of the Lowry procedure for the analysis of proteolipid protein. Anal. Biochem. 47, 184–192

    Google Scholar 

  • Marmé, D., Dieter, P. (1983) The role of Ca2+ and calmodulin in plants. In: Calcium and cell function, vol. 4, pp. 263–311, Cheung, W.Y., ed. Academic Press, New York London

    Google Scholar 

  • Marrè, D. (1979) Fusicoccin, a tool in plant physiology. Annu. Rev. Plant Physiol. 30, 273–288

    Google Scholar 

  • Rubinstein, B., Cleland, R.E. (1981) Responses of Avena coleoptiles to suboptimal fusicoccin: kinetics and comparisons with indoleacetic acid. Plant Physiol. 68, 543–547

    Google Scholar 

  • Scatchard, G. (1949) The attractions of proteins for small molecules. Ann. N.Y. Acad. Sci. 51, 660–672

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aducci, P., Ballio, A. & Marra, M. Incubation of corn coleoptiles with auxin enhances in-vitro fusicoccin binding. Planta 167, 129–132 (1986). https://doi.org/10.1007/BF00446379

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446379

Key words

Navigation