Skip to main content
Log in

Effect of oxygen concentration on dark nitrogen fixation and respiration in cyanobacteria

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Simultaneous measurements of acetylene reduction by Anabaena variabilis and the concentration of dissolved oxygen in the suspension were made using a specially designed vessel which allowed measurements under steady-state conditions. The rate of acetylene reduction in the dark increased with increasing oxygen concentrations until a maximum value was reached at 300 μM O2 (corresponding to 30% O2 in the gas phase at 35°C). This presumably results from a requirement for energy provided by respiration. Measurements of the dependence of respiration rate on dissolved oxygen concentration were made under comparable conditions using an open system to allow conditions close to steady-state to be obtained. The respiration rate of diazotrophically grown Anabaena variabilis had a dependence on oxygen concentration corresponding to the sum of two activities. These had K m values of 1.0 μM and 69 μM and values of V max of similar magnitude. Only the high affinity activity was observed in nitrate-grown cyanobacteria lacking heterocysts, and this presumably represent activity in the vegetative cells. The oxygen concentration dependence of the low affinity activity resembled that for the stimulation of acetylene reduction. We interpret this as the result of oxygen uptake by the heterocysts. The results are consistent with the idea that in intact filaments of cyanobacteria O2 enters heterocysts much more slowly than it enters the vegetative cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergersen FJ, Turner GL (1980) Properties of terminal oxidase systems of bacteroids from root nodules of soybean and cowpea and of N2 fixing bacteria grown in continuous culture. J Gen Microbiol 118:235–252

    Google Scholar 

  • Booker MJ, Walsby AE (1979) The relative form resistance of straight and helical blue-green algal filaments. Br Phycol J 14:141–150

    Google Scholar 

  • Burns DJW, Tucker SA (1977) An evaluation of fitting methods for the sum of two hyperbolas: application to uptake studies. Eur J Biochem 81:45–52

    Google Scholar 

  • Chemical Rubber Company (1962) Handbook of chemistry andphysics. 44th ed. CRC Press, Cleveland, OH, pp 1706 and 1708

    Google Scholar 

  • Degn H, Lundsgaard JS, Petersen LC, Ormicki A (1980) Polarographic measurement of steady-state kinetics of oxygen uptake by biochemical samples. Meth Biochem Anal 26:47–77

    Google Scholar 

  • Degn H, Wohlrab H (1971) Measurement of steady-state values of respiration rate and oxidation levels of respiratory pigments at low oxygen tensions. A new technique. Biochim Biophys Acta 245:347–355

    Google Scholar 

  • Eisenthal R, Cornish-Bowden A (1974) The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139:715–720

    Google Scholar 

  • Falkenberg P, Buckland B, Walsby AE (1972) Chemical composition of gas vesicles isolated from Anabaena flos-aquae. Arch Mikrobiol 85:304–309

    Google Scholar 

  • Fay P (1980) Heterocyst isolation. Methods Enzymol 69:801–812

    Google Scholar 

  • Fay P, Walsby AE (1966) Metabolic activities of isolated heterocysts of the blue-green alga Anabaena cylindrica. Nature (Lond) 209:94–95

    Google Scholar 

  • Gallon JR (1981) The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms. Trends Biochem Sci 6:19–23

    Google Scholar 

  • Haury JF, Wolk CP (1978) Classes of Anabaena variabilis mutants with oxygen-sensitive nitrogenase activity. J Bact 136:688–692

    Google Scholar 

  • Haystead A, Robinson R, Stewart WDP (1970) Nitrogenase activity in extracts of heterocystous and non-heterocystous blue-green algae. Arch Mikrobiol 74:235–243

    Google Scholar 

  • Hochman A, Burris RH (1981) Effect of oxygen on acetylene reduction by photosynthetic bacteria. J Bact 147:492–499

    Google Scholar 

  • Jensen BB, Cox RP (1983) Direct measurements of steady-state kinetics of cyanobacterial N2 uptake using membrane-leak mass spectrometry, and comparisons between nitrogen fixation and acetylene reduction. Appl Environ Microbiol 45:1331–1337

    Google Scholar 

  • Linton JD, Bull AT, Harrison DEF (1977) Determination of the apparent K m for oxygen of Beneckea natriegens using the respirograph technique. Arch Microbiol 114:111–113

    Google Scholar 

  • Lloyd D, Williams J, Yarlett N, Williams AG (1982) Oxygen affinities of the hydrogenosome-containing protozoa Tritrichomonas foetus and Dasytericha ruminantium, and two aerobic protozoa, determined by bacterial bioluminescence. J Gen Microbiol 128:1019–1022

    Google Scholar 

  • Lundsgaard JS, Degn H (1973) Digital regulation of gas flow rates and composition of gas mixtures. IEEE Trans Biomed Eng 20:384–387

    Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    Google Scholar 

  • Peschek GA, Schmetterer G, Lauritsch G, Nitschmann WH, Kienzl PF, Muchl R (1982) Do cyanobacteria contain “mammalian-type” cytochrome oxidase? Arch Microbiol 131:261–265

    Google Scholar 

  • Petersen LC (1977) The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase. Biochim Biophys Acta 460:299–307

    Google Scholar 

  • Petersen LC, Nicholls P, Degn H (1976) The effect of oxygen concentration on the steady-state kinetics of the solubilized cytochrome c oxidase. Biochim Biophys Acta 452:59–65

    Google Scholar 

  • Peterson RB, Burris RH (1976) Properties of heterocysts isolated with colloidal silica. Arch Microbiol 108:35–40

    Google Scholar 

  • Peterson RB, Burris RH (1978) Hydrogen metabolism in isolated heterocysts of Anabaena 7120. Arch Microbiol 116:125–132

    Google Scholar 

  • Rice CW, Hempfling WP (1978) Oxygen-limited continuous culture and respiratory energy conservation in Escherichia coli. J Bact 134:115–124

    Google Scholar 

  • Robson RL, Postgate JR (1980) Oxygen and hydrogen in biological nitrogen fixation. Annu Rev Microbiol 34:183–207

    Google Scholar 

  • Stewart WDP (1973) Nitrogen fixation by photosynthetic microorganisms. Annu Rev Microbiol 27:283–316

    Google Scholar 

  • Tel-Or E, Stewart WDP (1977) Photosynthetic components and activities of nitrogen fixing isolated heterocysts of Anabaena cylindrica. Proc R Soc Lond B 198:61–86

    Google Scholar 

  • Tischer RG (1965) Pure culture of Anabaena flos-aquae A 37. Nature (Lond) 205:419–420

    Google Scholar 

  • Walsby AE (1982) The permeability of gas vesicles, vegetative cells and heterocysts of Anabaena flos-aquae to oxygen and nitrogen. Abstracts IV International Symposium on Photosynthetic Prokaryotes, Bombannes, France, C33

  • Watanabe A, Yamamoto Y (1967) Heterotrophic nitorgen fixation by the blue-green alga Anabaenopsis circularis. Nature (Lond) 214:738

    Google Scholar 

  • Wolk CP (1982) Heterocysts. In: Carr NG, Whitton BW (eds) The biology of cyanobacteria. Blackwell, Oxford, pp 359–386

    Google Scholar 

  • Wolk CP, Shaffer PW (1976) Heterotrophic micro- and macro-cultures of a nitrogen-fixing cyanobacterium. Arch Microbiol 110:145–147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, B.B., Cox, R.P. Effect of oxygen concentration on dark nitrogen fixation and respiration in cyanobacteria. Arch. Microbiol. 135, 287–292 (1983). https://doi.org/10.1007/BF00413483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413483

Key words

Navigation