Skip to main content
Log in

The possible role of metallothioneins in copper tolerance of Silene cucubalus

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Growth and copper-binding of a copper-tolerant and a copper-sensitive population of Silene cucubalus (L.) Wib. have been studied. The copper-tolerant plants showed a much lower uptake and a proportionally higher transport of copper from root to shoot. A copper-binding protein with an apparent Mr of 8500 resembling metallothionein has been isolated from the roots of copper-treated plants of the tolerant population. After 20 d, the protein was observed to be inducible upon copper supply in the copper-tolerant plants, but not yet in the sensitive ones. This could be an indication of a difference in metalregulated synthesis of the protein. Ion-exchange chromatography of the 8500 protein yielded a major copper-containing fraction eluting at high ionic strength. Other characteristics such as UV absorption and amino-acid composition resembled strongly those of metallothioneins. The involvement of metallothioneins in the detoxification of copper within Cu-tolerant plants is discussed in relation to other mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DEAE:

diethyloaminoethyl

References

  • Antonovics, J., Bradshaw, A.D., Turner, R.G. (1971) Heavy metal tolerance in plants. Adv. Ecol. Res. 7, 1–85

    Google Scholar 

  • Allen, R., Sheppard, P.M. (1971) Copper tolerance in some Californian populations of the Monkey Flower Mimulus guttatus. Proc. R. Soc. London Ser. B 177, 177–196

    Google Scholar 

  • Baker, A.J.M. (1978) Ecophysiological aspects of zinc tolerance in Silene maritima With. New Phytol. 80, 635–642

    Google Scholar 

  • Bartolf, M., Brennan, E., Price, C.A. (1980) Partial characterization of a cadmium-binding protein from the roots of cadmium-treated tomato. Plant Physiol. 66, 438–441

    Google Scholar 

  • Brookes, A., Collins, J.C., Thurman, D.A. (1981) The mechanism of zinc tolerance in grasses. J. Plant Nutrition 3, 695–705

    Google Scholar 

  • Casterline, J.L., Barnett, N.M. (1982) Cadmium-binding components in soybean plants. Plant Physiol. 69, 1004–1007

    Google Scholar 

  • Cox, R.M., Hutchinson, T.C. (1980) Multiple metal tolerances in the grass Deschampsia caespitosa (L.) Beauv. from the Sudbury smelting area. New Phytol. 84, 631–647

    Google Scholar 

  • Dabin, P., Marafanta, E., Mousny, J.M., Myttenaere, C. (1978) Absorption, distribution and binding of cadmium and zinc in irrigated rice plants. Plant. Soil. 50, 329–341

    Google Scholar 

  • Ernst, W.H.O. (1969) Zur Physiologie der Schwermetallpflanzen — Subzelluläre Speicherungsorte des Zinks. Ber. Dtsch. Bot Ges. 82, 161–164

    Google Scholar 

  • Ernst, W.H.O. (1972) Schwermetallresistenz und Mineralstoffhaushalt. Forschungsber. Landes Nordrhein-Westfalen 2251, 1–38

    Google Scholar 

  • Ernst, W.H.O. (1974) Schwermetallvegetation der Erde. Fischer, Stuttgart

    Google Scholar 

  • Ernst, W.H.O. (1982) Schwermetallpflanzen. In: Pflanzenökologie und Mineralstoffwechsel, pp. 472–499, Kinzel, H., ed. Ulmer, Stuttgart

    Google Scholar 

  • Fogel, S., Welch, J.W. (1982) Tandem gene amplification mediates copper resistance in yeast. Proc. Natl. Acad. Sci. USA 79, 5342–5346

    Google Scholar 

  • Graham, R.D. (1981) Absorption of copper by plants roots. In: Copper in soils and plants, pp. 141–163, Loneragan, J.F., Robson, A.D., Graham, R.D., eds. Academic Press, Sydney New York London

    Google Scholar 

  • Gregory, R.P., Bradshaw, A.D. (1965) Heavy metal tolerance in populations of Agrostis tenuis and other grasses. New Phytol. 64, 131–143

    Google Scholar 

  • Hewitt, E.J. (1983) A perspective of mineral nutrition: essential and functional metals in plants. In: Metals and micronutrients: uptake and utilization by plants, pp. 227–323, Robb, D.A., Pierpoint, W.S., eds. Academic Press, London New York

    Google Scholar 

  • Kägi, J.H.R., Coombs, T.L., Overnell, J., Webb, M. (1981) Synthesis and function of metallothioneins. Nature (London) 292, 495–496

    Google Scholar 

  • Kägi, J.H.R., Himmelhoch, S.R., Whanger, P.D., Bethune, J.L., Vallee, B.L. (1974) Equine hepatic and renal metallothioneins. J. Biol. Chem. 249, 3537–3542

    Google Scholar 

  • Kägi, J.H.R., Nordberg, M. (1978) Metallothionein. Birkhäuser, Basel Boston Stuttgart

    Google Scholar 

  • Lerch, K. (1980) Copper metallothionein, a copper-binding protein from Neurospora crassa. Nature (London) 284, 368–370

    Google Scholar 

  • Lolkema, P.C., Donker, M.H., Kanneworff, W.A. (1983) Physiological and biochemical aspects of Cu tolerance in Silene cucubalus. In: Proc. Int. Conf. Heavy metals in the Environment (Heidelberg), pp. 451–454. CEP Consultants, Edinburgh

    Google Scholar 

  • Mathys, W. (1977) The role of malate, oxalate and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol. Plant. 40, 130–136

    Google Scholar 

  • Premakumar, R., Winge, D.R., Wiley, R.D., Rajagopalan, K.V. (1975) Copperchelatin: isolation from various eucariotic sources. Arch. Biochem. Biophys. 170, 278–288

    Google Scholar 

  • Rauser, W.E. (1981) Occurence of metal-binding proteins in plants. In: Proc. Int. Conf. Heavy Metals in the Environment (Amsterdam), pp. 281–284. CEP Consultans, Edinburgh

    Google Scholar 

  • Rauser, W.E. (1984) Copper-binding protein and copper tolerance in Agrostis gigantea. Plant Sci. Lett. 33, 329–247

    Google Scholar 

  • Rauser, W.E., Curvetto, N.R. (1980) Metallothionein occurs in roots of Agrostis tolerant to excess copper. Nature (London) 287, 563–564

    Google Scholar 

  • Turner, R.G. (1970) The subcellular distribution of zinc and copper within the roots of metal-tolerant clones of Agrostis tenuis Sibth. New Phytol. 69, 725–731

    Google Scholar 

  • Wagner, G.J., Trotter, M.M. (1982) Inducible cadmium binding complexes of cabbage and tobacco. Plant Physiol. 69, 804–809

    Google Scholar 

  • Wainwright, S.J., Woolhouse, H.W. (1975) Physiological mechanisms of heavy metal tolerance in plants. In: The ecology of resource degradation and renewal, pp. 231–259, Chadwick, M.J., Goodman, G.T., eds. Blackwell, Oxford

    Google Scholar 

  • Walley, K.A., Kahn, M.S.I., Bradshaw, A.D. (1974) The potential for evolution of heavy metal tolerance in plants. I. Copper and zinc tolerance in Agrostis tenuis. Heredity 32, 309–319

    Google Scholar 

  • Weigel, H.J., Jäger, H.J. (1980) Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol. 65, 480–482

    Google Scholar 

  • Weser, U., Hartmann, H.-J., Fretzdorff, A., Strobel, G.-J. (1977) Hormologous copper (I)-(thiolate)2-chromophores in yeast copper thionein. Biochim. Biophys. Acta 493, 465–477

    Google Scholar 

  • Wu, L., Thurman, D.A., Bradshaw, A.D. (1975) The uptake of copper and its effect upon respiratory processes of copper-tolerant and non-tolerant clones of Agrostis stolonifera. New Phytol. 75, 225–229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lolkema, P.C., Donker, M.H., Schouten, A.J. et al. The possible role of metallothioneins in copper tolerance of Silene cucubalus . Planta 162, 174–179 (1984). https://doi.org/10.1007/BF00410215

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00410215

Key words

Navigation