Skip to main content
Log in

Laser-induced fluorescence detection of singlet CH2 in low-pressure methane/oxygen flames

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Methylene, CH2, is a chemically important intermediate in hydrocarbon combustion but has previously eluded optical detection in a combustion environment. The CH2 signal as a function of height above the burner surface in a premixed, laminar, methane/oxygen flame (5.6 Torr and fuel equivalence ratio ∼1.05) is measured by laser-induced fluorescence (LIF) in the\(\tilde b^1 \) B 1 − ã1 A 1 electronic system. The ã state which lies ∼3165 cm−1 above the ground state is populated at the high temperatures of the flame (800–1800 K). Although less than one photon for each laser pulse is detected, we can unambiguously attribute the LIF features in the region 450 to 650 nm to CH2 by both scanning the excitation laser and dispersing fluorescence. LIF temperatures and CH and OH LIF concentration profiles are also obtained for the flame. The CH2 radical concentration maximum occurs closer to the burner than that of either OH or CH, as expected from models of methane combustion chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For example, A.H. Laufer: Rev. Chem. Intermed. 4, 225 (1981)

    Google Scholar 

  2. T. Böhland, S. Dobe, F. Temps, H.Gg. Wagner: Ber. Bunsenges. Phys. Chem. 89, 1110 (1985)

    Google Scholar 

  3. T. Böhland, F. Temps, H.Gg. Wagner: Ber. Bunsenges. Phys. Chem. 90, 468 (1986)

    Google Scholar 

  4. T. Böhland, F. Temps, H.Gg. Wagner: J. Phys. Chem. 91, 1205 (1987)

    Google Scholar 

  5. W. Hack, M. Koch, H.Gg. Wagner, A. Wilms: Ber. Bunsenges. Phys. Chem. 92, 674 (1988)

    Google Scholar 

  6. V. Seidler, F. Temps, H.Gg. Wagner, M. Wolf: J. Phys. Chem. 93, 1070 (1989)

    Google Scholar 

  7. K.H. Homann, H. Schweinfurth: Ber. Bunsenges. Phys. Chem. 85, 569 (1981)

    Google Scholar 

  8. K.H. Homann, Ch. Wellmann: Ber. Bunsenges. Phys. Chem. 87, 609 (1983)

    Google Scholar 

  9. A.R.W. McKellar, P.R. Bunker, T.J. Sears, K.M. Evenson, R.J. Saykally, S.R. Langhoff: J. Chem. Phys. 79, 5251 (1983)

    Article  Google Scholar 

  10. G. Herzberg, J.W.C. Johns: Proc. R. Soc. London Ser. A 295, 106 (1966)

    Google Scholar 

  11. J. Peeters, S. Vanhaelemeersch, J. Van Hoeymissen, R. Borms, D. Vermeylen: J. Phys. Chem. 93, 3892 (1989)

    Google Scholar 

  12. D. Feldmann, K. Meier, R. Schmiedl, K.H. Welge: Chem. Phys. Lett. 60, 30 (1978)

    Article  Google Scholar 

  13. J. Danon, S.V. Filseth, D. Feldman, H. Zacharias, C.H. Dugan, K.H. Welge: Chem. Phys. 29, 345 (1978)

    Article  Google Scholar 

  14. A.J. Grimley, J.C. Stephenson: J. Chem. Phys. 74, 447 (1981)

    Article  Google Scholar 

  15. M.N.R. Ashfold, M.A. Fullstone, G. Hancock, G.W. Ketley: Chem. Phys. 55, 245 (1981)

    Article  Google Scholar 

  16. H. Petek, D.J. Nesbitt, D.C. Darwin, C.B. Moore: J. Chem. Phys. 86, 1172 (1987)

    Article  Google Scholar 

  17. G. Duxbury, Ch. Jungen: Mol. Phys. 63, 981 (1988)

    Google Scholar 

  18. W. Xie, A. Ritter, C. Harkin, K. Kasturi, H.-L. Dai: J. Chem. Phys. 89, 7033 (1988)

    Article  Google Scholar 

  19. H. Petek, D.J. Nesbitt, C.B. Moore, F.W. Birss, D.A. Ramsay: J. Chem. Phys. 86, 1189 (1987)

    Article  Google Scholar 

  20. K.J. Rensberger, M.J. Dyer, R.A. Copeland: Appl. Opt. 27, 3679 (1988)

    Google Scholar 

  21. M.J. Dyer, L.D. Pfefferle, D.R. Crosley: Appl. Opt. 29, 111 (1990)

    Google Scholar 

  22. W.K. Bischel, D.J. Bamford, L.E. Jusinski: Appl. Opt. 25, 1215 (1986)

    Google Scholar 

  23. H. Petek, D.J. Nesbitt, D.C. Darwin, C.B. Moore: Unpublished results

  24. K.J. Rensberger, J.B. Jeffries, R.A. Copeland, K. Kohse-Höinghaus, M.L. Wise, D.R. Crosley: Appl. Opt. 28, 3556 (1989)

    Google Scholar 

  25. K. Kohse-Höinghaus, J.B. Jeffries, R.A. Copeland, G.P. Smith, D.R. Crosley: Twenty-Second International Symposium on Combustion (1988) p. 1857

  26. R.A. Copeland, M.L. Wise, K.J. Rensberger, D.R. Crosley: Appl. Opt. 28, 3199 (1989)

    Google Scholar 

  27. D.C. Comeau, I. Shavitt, P. Jensen, P.R. Bunker: J. Chem. Phys. 90, 6491 (1989)

    Article  Google Scholar 

  28. P. Jenson, P.R. Bunker, A.R. Hoy: J. Chem. Phys. 77, 5370 (1982)

    Article  Google Scholar 

  29. G.P. Smith: Private communication

  30. N.L. Garland, D.R. Crosley: J. Quant. Spectrosc. Radiat. Transfer 33, 591 (1985)

    Article  Google Scholar 

  31. P.C. Cross, R.M. Hainer, G.W. King: J. Chem. Phys. 12, 210 (1944)

    Google Scholar 

  32. A.C. Eckbreth: “Laser Diagnostics for Combustion Temperature and Species,” Abacus; Cambridge, Chap. 5 (1988)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sappey, A.D., Crosley, D.R. & Copeland, R.A. Laser-induced fluorescence detection of singlet CH2 in low-pressure methane/oxygen flames. Appl. Phys. B 50, 463–472 (1990). https://doi.org/10.1007/BF00408772

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408772

PACS

Navigation