Skip to main content
Log in

Biopreservation by lactic acid bacteria

  • Applications
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Biopreservation refers to extended storage life and enhanced safety of foods using the natural microflora and (or) their antibacterial products. Lactic acid bacteria have a major potential for use in biopreservation because they are safe to consume and during storage they naturally dominate the microflora of many foods. In milk, brined vegetables, many cereal products and meats with added carbohydrate, the growth of lactic acid bacteria produces a new food product. In raw meats and fish that are chill stored under vacuum or in an environment with elevated carbon dioxide concentration, the lactic acid bacteria become the dominant population and preserve the meat with a ‘hidden’ fermentation. The same applies to processed meats provided that the lactic acid bacteria survive the heat treatment or they are inoculated onto the product after heat treatment. This paper reviews the current status and potential for controlled biopreservation of foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LAB:

lactic acid bacteria

C :

Carnobacterium

Lb :

Lactobacillus

Lc :

Lactococcus

Le :

Leuconostoc

Ls :

Listeria

P :

Pediococcus

References

  • Abdalla OM, Davidson PM & Christen GL (1993) Survival of selected pathogenic bacteria in white pickled cheese made with lactic acid bacteria or antimicrobials. J. Food Prot. 56: 972–976

    Google Scholar 

  • Adams MR & Marteau P (1995) On the safety of lactic acid bacteria from food. Int. J. Food Microbiol. 27: 263–264

    Google Scholar 

  • Aguirre M & Collins MD (1993). Lactic acid bacteria and human clinical infection. J. Appl. Bacteriol. 75: 95–107

    Google Scholar 

  • Axelsson L & Holck A (1995) A gene involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Bacteriol. 177: 2125–2137

    Google Scholar 

  • Aymerich, Nes & Vogel, unpublished data

  • Berry ED, Hutkins RW & Mandigo RW (1991) The use of bacteriocin-producing Pediococcus acidilactici to control postprocessing Listeria monocytogenes contamination of Frankfurters. J. Food Prot. 540: 681–686

    Google Scholar 

  • Berry ED, Liewen MB, Mandigo RW & Hutkins RW (1990) Inhibition of Listeria monocytogenes by bacteriocin-producing Pediococcus during manufacture of fermented semidry sausage. J. Food Prot. 53: 194–197

    Google Scholar 

  • Breidt F, Crowley KA & Fleming HP (1995) Controlling cabbage fermentations with nisin and nisin-resistant Leuconostoc mesenteroides. Food Microbiol. 12: 109–116

    Google Scholar 

  • Brocklehurst TF, Zaman-Wong CM & Lund BM (1987) A note on the microbiology of retail packs of prepared salad vegetables. J. Appl. Bacteriol. 63: 409–415

    Google Scholar 

  • Buckenhüskes HJ (1993) Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FEMS Microbiol. Rev. 12: 253–272

    Google Scholar 

  • Campanini M, Pedrazzoni I, Barbuti S & Baldini P (1993) Behviour of Listeria monocytogenes during the maturation of naturally and artificially contaminated salami: effect of lactic-acid bacteria starter cultures. Int. J. Food Microbiol. 20: 169–175

    Google Scholar 

  • Chakicherla A & Hansen JN (1995) Role of the leader and structural regions of prelantibiotic peptides as assessed by expressing nisinsubtilin chimeras in Bacillus subtilis 168, and characterization of the physical, chemical, and antimicrobial properties. J. Biol. Chem. 270: 23533–23539

    Google Scholar 

  • Choi SY & Beuchat LR (1994) Growth inhibition of Listeria monocytogenes by a bacteriocin of Pediococcus acidilactici M during fermentation of kimchi. Food Microbiol. 11: 301–307

    Google Scholar 

  • Christensen DP & Hutkins RW (1994) Glucose uptake by Listeria monocytogenes Scott A and inhibition by pediocin JD. Appl. Environ. Microbiol. 60: 3870–3873

    Google Scholar 

  • Cutter CN & Siragusa GR (1994) Decontamination of beef carcass tissue with nisin using a pilot scale model carcass washer. Food Microbiol. 11: 481–489

    Google Scholar 

  • Daba H, Pandian S, Gosselin JF, Simard RE, Huang J & Lacroix C 1991. Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl. Environ. Microbiol. 57: 3450–3455

    Google Scholar 

  • Daeschel MA (1993) Applications and interactions of bacteriocins from lactic acid bacteria in foods and beverages In: Bacteriocins of Lactic Acid Bacteria (Hoover DG & Steenson LR Eds.), pp. 63–91. Academic Press, New York

    Google Scholar 

  • Daeschel MA, Jung DS & Watson BT (1991) Controlling wine malolactic fermentation with nisin and nisin-resistant strains of Leuconostoc oenos. Appl. Environ. Microbiol. 57: 601–603

    Google Scholar 

  • Dainty RH & Mackey BM (1992) The relationship between the phenotypic properties of bacteria from chill-stored meat and spoilage processes. J. Appl. Bacteriol. 73 (Supplement): 103S-114S

    Google Scholar 

  • Degnan AJ, Yousef AE & Luchansky JB (1992) Use of Pediococcus acidilactici to control Listeria monocytogenes in temperatureabused vacuum-packaged wieners. J. Food Prot. 55: 98–103

    Google Scholar 

  • Dellaglio F, Dicks LMT & Torriani S (1995) The genus Leuconostoc. In: The Lactic Acid Bacteria, Vol. 2. The Genera of Lactic Acid Bacteria (Wood B.J.B. & Holzapfel W.H., Eds.), pp. 235–278. Blackie Academic and Professional, Glasgow

    Google Scholar 

  • Delves-Broughton J (1990) Nisin and its uses as a food preservative. Food Technol. 44(11): 100, 102, 104, 106, 108, 111, 112, 117

    Google Scholar 

  • Devriese LA, Collins MD & Wirth R (1991) The genus Enterococcus. In: The Prokaryotes, Vol. II, 2nd Edn. (Balows A, Trüper HP, Dworkin M, Harder W & Schleifer KH, Eds.), pp. 1465–1481. Springer-Verlag, New York

    Google Scholar 

  • Dodd HM, Horn N, Giffard CJ & Gasson MJ (1996) A gene replacement strategy for engineering nisin. Microbiology 142: 47–55

    Google Scholar 

  • Durán MC, Garcia P, Brenes M & Garrido A (1994) Induced lactic acid fermentation during the preservation stage of ripe olives from Hojiblanca cultivar. J. Appl. Bacteriol. 76: 377–382

    Google Scholar 

  • Egan AF, Shay BJ & Rogers PJ (1989) Factors affecting the production of hydrogen sulphide by Lactobacillus sake L13 growing on vacuum packaged beef. J. Appl. Bacteriol. 67: 255–262

    Google Scholar 

  • Einarsson H & Lauzon HL (1995) Biopreservation of brined shrimp (Pandalus borealis) by bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol. 61: 669–676

    Google Scholar 

  • Felix JV, Papathanasopoulos MA, Smith AA, von Holy A & Hastings JW (1994) Characterization of leucocin B-Ta11a: a bacteriocin from Leuconostoc carnosum Ta11a isolated from meat. Curr. Microbiol. 29: 207–212

    Google Scholar 

  • Fields FO (1996) Use of bacteriocins in food: regulatory considerations. J. Food Prot. 1996 (Supplement): 82–86

    Google Scholar 

  • Fleming HP, Etchells JL & Costilow RN (1975) Microbial inhibition by an isolate of Pediococcus from cucumber brines. Appl. Microbiol. 30: 1040–1042

    Google Scholar 

  • Fleming HP, McFeeters RF & Humphries EG (1988) A fermentor for study of sauerkraut fermentation. Biotechnol. Bioeng. 31: 189–197

    Google Scholar 

  • Foegeding PM, Thomas AB, Pilkington DH & Klaenhammer TR (1992) Enhanced control of Listeria monocytogenes by in situproduced pediocin during dry fermented sausage production. Appl. Environ. Microbiol. 58: 884–890

    Google Scholar 

  • Fremaux C, Héchard Y & Cenatiempo Y (1995) Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105. Microbiology (Reading) 141: 1637–1645

    Google Scholar 

  • Fujisawa T, Benno Y, Yaeshima T & Mitsuoka T (1992) Taxonomic study of the Lactobacillus acidophilus group, with recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and synonymy of Lactobacillus acidophilus group A3 (Johnson et al., 1980) with the type strain of Lactobacillus amylovorus (Nakamura 1981). Int. J. Syst. Bacteriol. 42: 487–491

    Google Scholar 

  • Gardner GA (1981) Brochothrix thermosphacta (Microbacterium thermosphactum) in the spoilage of meats: a review. In: Psychrotrophic microorganisms in spoilage and pathogenicity (Roberts TA, Hobbs G, Christian JHB & Skovgaard N, Eds.), p. 139–173. Academic Press, New York

    Google Scholar 

  • Gasser F 1994. Safety of lactic acid bacteria and their occurrence in human clinical infections. Bull. Inst. Pasteur 92: 45–67

    Google Scholar 

  • Giraffa G, Picchioni N, Neviani E & Carminati D (1995) Production and stability of an Enterococcus faecium bacteriocin during Taleggio cheesemaking and ripening. Food Microbiol. 12: 301–307

    Google Scholar 

  • Glass KA, Prasad BB, Schlyter JH, Uljas HE, Farkye NY & Luchansky JB (1995) Effects of acid type and AltaTM2341 on Listeria monocytogenes in a Queso Blanco type cheese. J. Food Prot. 58: 737–741

    Google Scholar 

  • Gould GW (1992) Ecosystem approach to food preservation. J. Appl. Bacteriol. 73 (Supplement): 58S-68S

    Google Scholar 

  • (1992) Industry perspectives on the use of natural antimicrobials and inhibitors for food applications. J. Food Prot. 1996 (Supplement): 82–86

    Google Scholar 

  • Greer GG & Jones SDM (1991) Effects of lactic acid & vacuum packaging on beef processed in a research abattoir. Can. Inst. Food Sci. Technol. J. 24: 161–168

    Google Scholar 

  • Greer GG & Dilts BD 1995. Lactic acid inhibition of the growth of spoilage bacteria and cold tolerant pathogens on pork. Int. J. Food Microbiol. 25: 141–151

    Google Scholar 

  • Guerrero I, Mendiolea R, Ponce E & Prado A (1995) Inoculation of lactic acid bacteria on meat surfaces as a means of decontamination in semitropical conditions. Meat Sci. 40: 397–411

    Google Scholar 

  • Hammes WP (1990) Bacterial starter cultures in food production. Food Biotechnol. 4: 383–397

    Google Scholar 

  • Hammes WP & Tichaczek PS (1994) The potential of lactic acid bacteria for the production of safe and wholesome food. Z. Lebensm. Unters. Forsch. 198: 193–201

    Google Scholar 

  • Hansen JN (1994) Nisin as a model food preservative. Crit. Rev. Food Sci. Nutr. 34: 69–93

    Google Scholar 

  • Harris LJ, Fleming HP & Klaenhammer TR (1992) Characterization of two nisin-producing Lactococcus lactis subsp. lactis strains isolated from a commercial sauerkraut fermentation. Appl. Environ. Microbiol. 58: 1477–1483

    Google Scholar 

  • (1992) Novel paired starter culture system for sauerkraut, consisting of a nisin-resistant Leuconostoc mesenteroides strain and a nisin-producing Lactococcus lactis strain. Appl. Environ. Microbiol. 58: 1484–1489

    Google Scholar 

  • Hastings JW, Sailer M, Johnson K, Roy KL, Vederas JC & Stiles ME (1991) Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173: 7491–7500

    Google Scholar 

  • Héchard Y, Dérijard B, Letellier F & Letellier Y (1992) Characterization and purification of mesentericin Y 105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides. J. Gen. Microbiol. 138: 2725–2731

    Google Scholar 

  • Henick-Kling T (1995) Control of malo-lactic fermentation in wine: energetics, flavour modification and methods of starter culture preparation. J. Appl. Bacteriol. 79 (Supplement): 29S-37S

    Google Scholar 

  • Hirsch A, Grinsted E, Chapman HR & Mattick ATR (1951) A note on the inhibition of an anaerobic sporeformer in Swiss-type cheese by a nisin-producing Streptococcus. J. Dairy Res. 18: 205–206

    Google Scholar 

  • Holzapfel WH, Geisen R & Schillinger U (1995) Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 24: 343–362

    Google Scholar 

  • Hoover DG, Walsh PM, Kolaetis KM & Daly MM (1988) A bacteriocin produced by Pediococcus species associated with a 5.5 MDal plasmid. J. Food Prot. 51: 29–31

    Google Scholar 

  • Hugas M, Garriga M, Aymerich MT & Monfort JM 1995. Inhibition of Listeria in dry fermented sausages by the bacteriocinogenic Lactobacillus sake CTC494. J. Appl. Bacteriol. 79: 322–330

    Google Scholar 

  • Hugenholtz J & de Veer GJCM (1991) Application of nisin A and nisin Z in dairy technology. In: Nisin and Novel Lantibiotics (Jung G & Sahl HG, Eds.), pp. 440–447. ESCOM, Leiden, The Netherlands

    Google Scholar 

  • Hurst A (1973) Microbial antagonism in foods. Can. Inst. Food Sci. Technol. J. 6: 80–90

    Google Scholar 

  • (1981) Nisin. Adv. Appl. Microbiol. 27: 85–123

    Google Scholar 

  • Hutton MT, Chehak PA & Hanlin JH (1991) Inhibition of botulinum toxin production by Pediococcus acidilactici in temperature abused refrigerated foods. J. Food Safety 11: 255–267

    Google Scholar 

  • Huxoll CC & Bolin HR (1989) Processing and distribution alternatives for minimally processed fruits and vegetables. Food Technol. 43(2): 124–128

    Google Scholar 

  • Jack RW, Tagg JR & Ray B 1995. bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171–200

    Google Scholar 

  • Jiménez-Diaz R, Rios-Sánchez RM, Desmazeaud M, Ruiz-Barba JL & Piard JC (1993) Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO 10 isolated from a green olive fermentation. Appl. Environ. Microbiol. 59: 1416–1424

    Google Scholar 

  • Johnson JL, Doyle MP & Cassens RG (1990) Listeria monocytogenes and other Listeria spp. in meat and meat products. J. Food Prot. 53: 81–91

    Google Scholar 

  • Jung DS, Bodyfelt FW & Daeschel MA (1992) Influence of fat and emulsifiers on the efficacy of nisin in inhibiting Listeria monocytogenes in fluid milk. J. Dairy Sci. 75: 387–393

    Google Scholar 

  • Kuipers OP, Rollema HS, de Vos WM & Siezen RJ (1993) Biosynthesis and secretion of a precursor of nisin Z by Lactococcus lactis, directed by the leader peptide of the homologous lantibiotic subtilin from Bacillus subtilis. FEBS Lett. 330: 23–27

    Google Scholar 

  • Leer RJ, van der Vossen JMBM, van Giezen M, van Noort JM & Pouwels PH (1995) Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus. Microbiology (Reading) 141: 1629–1635

    Google Scholar 

  • Leisner JJ, Greer GG, Dilts BD & Stiles ME (1995) Effect of growth of selected lactic acid bacteria on storage life of beef stored under vacuum and in air. Int. J. Food Microbiol. 26: 231–243

    Google Scholar 

  • Leisner JJ, Greer GG & Stiles ME (1996) Control of spoilage of beef by a sulfide-producing Lactobacillus sake with bacteriocinogeneic Leuconostoc gelidum UAL 187 during anaerobic storage at 2°C. Appl. Environ. Microbiol. (in press)

  • Leistner L (1992) Food preservation by combined methods. Food Res. Int. 25: 151–158

    Google Scholar 

  • Leistner L & Gorris GM (1995) Food preservation by hurdle technology. Trends Food Sci. Technol. 6: 41–46

    Google Scholar 

  • Lipinska E (1973) Use of nisin-producing lactic streptococci in cheese making. Annu. Bull. Int. Dairy Fed. 73: 1–24

    Google Scholar 

  • Luchansky JB, Glass KA, Harsono KD, Degnan AJ, Faith NG, Cauvin B, Baccus-Taylor G, Arihara K, Bater B, Maurer AJ & Cassens RG (1992) Genomic analysis of Pediococcus starter cultures used to control Listeria monocytogenes in turkey summer sausage. Appl. Environ. Microbiol. 58: 3053–3059

    Google Scholar 

  • Maisnier-Patin S, Deschamps N, Tatini SR & Richard J (1992) Inhibition of Listeria monocytogenes in Camembert cheese made with a nisin-producing starter. Lait 72: 249–263

    Google Scholar 

  • Marugg JD, Gonzalez CF, Kunka BS, Ledeboer AM, Pucci MJ, Toonen MY, Walker SA, Zoetmulder LCM & Vandenbergh PA 1992. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from P. acidilactici PAC1.0. Appl. Environ. Microbiol. 58: 2360–2367

    Google Scholar 

  • Mattick ATR & Hirsch A (1946) Sour milk and the tubercle bacillus. Lancet (i): 417–418

    Google Scholar 

  • McClintock M, Serres L, Marzolf JJ, Hirsch A & Mocquot G (1952) Action inhibitrice des streptocoques producteurs de nisine sur le développement des sporulés anaérobies dans le fromage de Gruyère fondu. J. Dairy Res. 19: 187–193

    Google Scholar 

  • McCormick JK, Worobo RW & Stiles ME Expression of the antimicrobial peptide carnobacteriocin B2 by a signal peptide, Sec-dependent pathway. Appl. Environ. Microbiol. submitted for publication McCormick & Stiles, unpublished data

  • McMullen LM & Stiles ME (1993) Microbial ecology of fresh pork stored under modified atmosphere at-1, 4.4 and 10°C. Int. J. Food Microbiol. 18: 1–14

    Google Scholar 

  • (1989) Storage life of selected meat sandwiches at 4°C in modified gas atmospheres. J. Food Prot. 52: 792–798

    Google Scholar 

  • Ming X & Daeschel MA (1993) Nisin resistance of foodborne bacteria and the specific resistance responses of Listeria monocytogenes Scott A. J. Food Prot. 56: 944–948

    Google Scholar 

  • (1995) Correlation of cellular phospholipid content with nisin resistance of Listeria monocytogenes Scott A. J. Food Prot. 56: 944–948

    Google Scholar 

  • Motlagh AM, Bhunia AK, Szostek F, Hansen TR, Johnson MC & Ray B (1992) Nucleotide and amino acid sequence of pap-gene (pediocin AcH production) in Pediococcus acidilactici H. Lett. Appl. Microbiol. 15: 45–48

    Google Scholar 

  • Motlagh AM, Holla S, Johnson MC, Ray B & Field RA (1992) Inhibition of Listeria spp. in sterile food systems by pediocin AcH, a bacteriocin produced by Pediococcus acidilactici H. J. Food Prot. 55: 337–343

    Google Scholar 

  • Mulders JWM, Boerrigter IJ, Rollema HS, Siezen RJ & de Vos WM (1993) Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem. 201: 581–584

    Google Scholar 

  • Muriana PM (1996) Bacteriocins for control of Listeria spp. in foods. J. Food Prot. 1996 (Supplement): 54–63

    Google Scholar 

  • Nielsen JW, Dickson JS & Crouse JD (1990) Use of a bacteriocin produced by Pediococcus acidilactici to inhibit Listeria monocytogenes associated with fresh meat. Appl. Environ. Microbiol. 56: 2142–2145

    Google Scholar 

  • Ogden K & Waites MJ (1988) The action of nisin on beer spoilage lactic acid bacteria. J. Inst. Brew. 92: 463–467

    Google Scholar 

  • Okereke A & Montville TJ (1991) Bacteriocin inhibition of Clostridium botulinum spores by lactic acid bacteria. J. Food Prot. 54: 349–356

    Google Scholar 

  • (1991) Bacteriocin-mediated inhibition of Clostridium botulinum spores by lactic acid bacteria at refrigeration and abuse temperatures. Appl. Environ. Microbiol. 57: 3423–3428

    Google Scholar 

  • Olsen A, Halm M & Jakobsen M 1995. The antimicrobial activity of lactic acid bacteria from fermented maize (kenkey) and their interactions during fermentation. J. Appl. Bacteriol. 79: 506–512

    Google Scholar 

  • Pederson MS & Albury MN 1961. The effect of pure culture inoculation on fermentation of cucumbers. Food Technol. 15: 351–354

    Google Scholar 

  • Pilet MF, Dousset X, Barré R, Novel G, Desmazeaud M & Piard JC (1995) Evidence for two bacteriocins produced by Carnobacterium piscicola and Carnobacterium divergens isolated from fish and active against Listeria monocytogenes. J. Food Prot. 58: 256–262

    Google Scholar 

  • Poon A, Sailer M, van Belkum MJ, Roy KL, Vederas JC & Stiles ME Biochemical and genetic characterization of brochocin C, an antibotulinal class II bacteriocin produced by Brochothrix campestris ATCC 43754. (Submitted for publication)

  • Pucci MJ, Vedamuthu ER, Kunka BS & Vandenbergh PA (1988) Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pediococcus acidilactici PAC1.0. Appl. Environ. Microbiol. 54: 2349–2353

    Google Scholar 

  • Pucci MJ, Vedamethu ER, Kunka BS & Vandenbergh PA (1988) Inhibition of Listeria monocytogenes by using pediocin PA-1 produced by Pediococcus acidilactici PAC1.0. Appl. Environ. Microbiol. 54: 2349–2353

    Google Scholar 

  • Quadri LEN, Sailer M, Roy KL, Vederas JC & Stiles ME (1994) Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J. Biol. Chem. 269: 12204–12211

    Google Scholar 

  • Quadri LEN, Roy KL, Vederas JC & Stiles ME Inactivation of four genes from Carnobacterium piscicola LV17B affects Production of antimicrobial peptides and immunity. Submitted

  • Radler F (1990) Possible use of nisin in winemaking. II. Experiments to control lactic acid bacteria in winemaking. Am. J. Enol. Vitic. 41: 7–11

    Google Scholar 

  • Ray B (1992) Bacteriocins of starter culture bacteria as food biopreservatives: an overview. In: Food Biopreservatives of Microbial Origin (Ray B. & Daeschel M., Eds.), pp. 177–205. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Rayman MK, Aris B & Hurst A (1981) Nisin: a possible alternative or adjunct to nitrite in the preservation of meats. Appl. Environ. Microbiol. 41: 375–380

    Google Scholar 

  • Roberts RF, Zottola EA & McKay LL (1992) Use of a nisinproducing starter culture suitable for cheddar cheese manufacture. J. Dairy Sci. 75: 2353–2363

    Google Scholar 

  • Rozbeh M, Kalchayanand N, Field RA, Johnson MC & Ray B (1993) The influence of biopreservatives on the bacterial level of refrigerated vacuum packaged beef. J. Food Safety 13: 99–111

    Google Scholar 

  • Ruiz-Barba JL, Cathcart DP, Warner PJ & Jiménez-Diaz R (1994) Use of Lactobacillus plantarum LPCO10, a bacteriocin producer, as a starter culture in Spanish-style green olive fermentations. Appl. Environ. Microbiol. 60: 2059–2064

    Google Scholar 

  • Ryan MP, Rea MC, Hill C & Ross P (1996) An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl. Environ. Microbiol. 62: 612–619

    Google Scholar 

  • Sandine WE, Radich PC & Elliker PR (1972) Ecology of the lactic streptococci. A review. J. Milk Food Technol. 35: 176–185

    Google Scholar 

  • Saucier L, Poon A & Stiles ME (1995) Induction of bacteriocin in Carnobacterium piscicola LV17. J. Appl. Bacteriol. 78: 684–690

    Google Scholar 

  • Schillinger U & Lücke FK 1987. Lactic acid bacteria on vacuumpackaged mead and their influence on shelf life. Fleischwirtsch. 67: 1244–1248

    Google Scholar 

  • — Lactic acid bacteria s protective cultures in meat products. Fleischwirtsch. 70: 1296–1299

  • Schillinger U, M. Kaya & FK Lücke 1991. Behaviour of Listeria monocytogenes in meat and its control by a bacteriocin-producing strain of Lactobacillus sake. J. Appl. Bacteriol. 70: 473–478

    Google Scholar 

  • Shaw BG & Harding CD (1984) A numerical taxonomic study of lactic acid bacteria from vacuum-packed beef, pork, lamb and bacon. J. Appl. Bacteriol. 56: 25–40

    Google Scholar 

  • (1989) Leuconostoc gelidum sp. nov. and Leuconostoc carnosum sp. nov. from chill-stored meats. Int. J. Syst. Bacteriol. 39: 217–223

    Google Scholar 

  • (1985) Atypical lactobacilli from vacuum-packaged meats: comparison by DNA hybridization, cell composition and biochemical tests with a description of Lactobacillus carnis sp. nov. Syst. Appl. Microbiol. 6: 291–297

    Google Scholar 

  • Siragusa GR & Nettles Cutter C (1993) Brochocin-C, a new bacteriocin produced by Brochothrix campestris. Appl. Environ. Microbiol. 59: 2326–2328

    Google Scholar 

  • Skyttä E, Hereijgers W & Mattila-Sandholm T (1991) Broad spectrum antibacterial activity of Pediococcus damnosus and Pediococcus pentosaceus in minced meat. Food Microbiol. 8: 231–237

    Google Scholar 

  • Somers EB & Taylor SL (1987) Antibotulinal effectiveness of nisin in pasteurized processed cheese spreads. J. Food Prot. 50: 842–848

    Google Scholar 

  • Stecchini ML, Aquili V & Sarais I (1995) Behavior of Listeria monocytogenes in Mozzarella cheese in presence of Lactococcus lactis. Int. J. Food Microbiol. 25: 301–310

    Google Scholar 

  • Stevens KA, Sheldon BW, Klapes NA & Klaenhammer TR (1991) Nisin treatment for inactivation of Salmonella species and other gram-vegative bacteria. Appl. Environ. Microbiol. 57: 3613–3615

    Google Scholar 

  • (1992) Effect of treatment conditions on nisin inactivation of Gram-negative bacteria. J. Food Prot. 55: 763–766

    Google Scholar 

  • Sulzer G & Busse M (1991) Growth inhibition of Listeria spp. on Camembert cheese by bacteria producing inhibitory substances. Int. J. Food. Microbiol. 14: 287–296

    Google Scholar 

  • Van Belkum MJ & Stiles ME (1995) Molecular characterization of genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum. Appl. Environ. Microbiol. 61: 3573–3579

    Google Scholar 

  • Van Belkum MJ & Stiles ME The double-glycine-type leader peptides direct the secretion of bacteriocins by the ABC transporter proteins. Submitted

  • Vandenbergh PA (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev. 12: 221–238

    Google Scholar 

  • Van der Vossen JMBM, van Herwijnen MHM, Leer RJ, ten Brink B, Pouwels PH & Huis in't Veld JHJ (1994) Production of acidocin B, a bacteriocin of Lactobacillus acidophilus M46 is a plasmidencoded trait: Plasmid curing, genetic marking by in vivo plasmid integration, and gene transfer. FEMS Microbiol. Lett. 116: 333–340

    Google Scholar 

  • Vescovo M, Orsi C, Scolari G & Torriani S (1995) Inhibitory effect of selected lactic acid bacteria on microflora associated with ready-to-use vegetables. Lett. Appl. Microbiol. 21: 121–125

    Google Scholar 

  • Winkowski K, AD Crandall & TJ Montville 1993. Inhibition of Listeria monocytogenes by Lb. bavaricus MN in beef systems at refrigeration temperatures. Appl. Environ. Microbiol. 59: 2552–2557

    Google Scholar 

  • Wood BJB & Holzapfel WH (1995) The Lactic Acid Bacteria, Vol. 2. The Genera of Lactic Acid Bacteria. Blackie Academic and Professional, Glasgow

    Google Scholar 

  • Worobo RW, henkel T, Sailer M, Roy KL, Vederas JC & Stiles ME (1994) Characteristics and genetic determinant of a hydrophobic peptide bacteriocin, carnobacteriocin A, produced by Carnobacterium piscicola LV17A. Microbiology (Reading) 140: 517–526

    Google Scholar 

  • Worobo RW, van Belkum MJ, Sailer M, Roy KL, Vederas JC & Stiles ME (1995) A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. J. Bacteriol. 177: 3143–3149

    Google Scholar 

  • Worobo RJ, Greer GG, Stiles ME & McMullen LM submitted for publication

  • Yousef AE, Luchansky JB, Degnan AJ & Doyle MP (1991) Behavior of Listeria monocytogenes in wiener exudates in the presence of Pediococcus acidilactici H or pediocin AcH during storage at 4 or 25°C. Appl. Environ. Microbiol. 57: 1461–1467

    Google Scholar 

  • Zottola EA, Yezzi TL, Ajao DB & Roberts RF (1994) Utilization of cheddar cheese containing nisin as an antimicrobial agent in other foods. Int. J. Food Microbiol. 24: 227–238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiles, M.E. Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek 70, 331–345 (1996). https://doi.org/10.1007/BF00395940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00395940

Keywords

Navigation