Skip to main content
Log in

Cytokinesis in the developing wheat grain; Division with and without a phragmoplast

  • Published:
Planta Aims and scope Submit manuscript

Summary

Cell wall formation during the transition from free-nuclear to cellular endosperm of wheat (Triticum aestivum L. cv. Heron) was investigated using correlated light and electron microscopy. Partitioning of the multinucleate syncytium that lines the inner periphery of the embryo sac is initiated 1–2 days after anthesis. Wall ingrowths, at first recognizable in sections as minute wall pegs, furrow inward from the edge of the embryo sac through the vacuolate cytoplasm which, to the inside, is clearly delimited by the central vacuole. Growth of the walls at this stage is independent of a phragmoplast and in this respect is reminiscent of the cleavage processes of lower plant cells. Intense fluorescence of the walls after staining with aniline blue suggests that callose may be a principal component. The growing walls branch and eventually meet on the side nearest the central vacuole. Cellularization of the peripheral layer of endosperm cytoplasm is thus complete about 2 days after anthesis. Between 2 and 3 days after anthesis, the peripheral layer of cells commences to divide both radially and tangentially and by 4 days the entire embryo sac is cellular. Cytokinesis during this phase entails the formation of a cell plate between sister nuclei. At the periphery of a forming cell plate, “vesicles” appear scattered amongst an array of phragmoplast microtubules. This mechanism of wall growth differs markedly from the initial infurrowing of the first-formed walls. The overall timing and the manner of cell wall deposition vary in a number of important respects from the model recently proposed by Mares et al. whose work was based largely on light microscopy (D.J. Mares; K. Norstog; A.B. Stone: Aust. J. Bot. 23, 311–326, 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CV:

central vacuole

D:

dictyosome

En:

endosperm

ER:

endoplasmic reticulum

II:

inner integument

m:

mitochondrion

MTs:

microtubules

N:

nucellus

NE:

nucellar epidermis

Nu:

nucleus

S:

starch

V:

vacuole

W:

embryo sac wall

References

  • Bajer, A.: Fine structure studies on phragmoplast and cell plate formation. Chromosoma (Berl.) 24, 383–417 (1968)

    Article  Google Scholar 

  • Eschrich, W., Currier, H.B.: Identification of callose by its diachrchrome and fluorochrome reactions. Stain Techn. 39, 303–307 (11964)

    Google Scholar 

  • Evers, A.D.: Development of the endosperm of wheat. Ann. Bot. 34, 547–555 (1970)

    Google Scholar 

  • Gordon, M.: The development of endosperm in cereals. Proc. roy. Soc. Victoria 34, 105–116 (1922)

    Google Scholar 

  • Hepler, P.K., Jackson, W.T.: Microtubules and early stages of cell-plate formation in the endosperm of Haemanthus katherinae Baker. J. Cell Biol. 38, 437–446 (1968)

    Article  PubMed  Google Scholar 

  • Hepler, P.K., Palevitz, B.A.: Microtubules and microfilaments. Ann. Rev. Pl. Physiol. 25, 309–362 (1974)

    Article  Google Scholar 

  • Lane, B.P., Europa, D.L.: Differential staining of ultrathin sections of epon-embedded tissues for light microscopy. J. Histochem. Cytochem. 13, 579–582 (1965)

    PubMed  Google Scholar 

  • Mares, D.J., Norstog, K., Stone, B.A.: Early stages in the development of wheat endosperm. I. The change from free nuclear to cellular endosperm. Aust. J. Bot. 23, 311–326 (1975)

    Google Scholar 

  • Mayor, H.D., Hampton, J.C., Rosario, B.: A simple method for removing the resin from epoxy-embedded tissue. J. biophys. biochem. Cytol. 9, 909–910 (1961)

    PubMed  Google Scholar 

  • Morrison, I.N., Kuo, J., O'Brien, T.P.: Histochemistry and fine structure of developing wheat aleurone cells. Planta (Berl.) 123, 105–116 (1975)

    Google Scholar 

  • Newcomb, E.H.: Plant microtubules. Ann. Rev. Pl. Physiol. 20, 253–288 (1969)

    Article  Google Scholar 

  • Newcomb, W.: The development of the embryo sac of sunflower Helianthus annuus L. after fertilization. Canad. J. Bot. 51, 879–890 (1973)

    Google Scholar 

  • Newcomb, W., Fowke, L.C.: The fine structure of the change from the free-nuclear to cellular condition in the endosperm of chickweed Stellaria media. Bot. Gaz. 123, 236–241 (1973)

    Article  Google Scholar 

  • O'Brien, T.P., The cytology of cell-wall formation in some eukaryotic cells. Bot. Rev. 38, 87–118 (1972)

    Google Scholar 

  • Pickett-Heaps, J.D.: The evolution of the mitotic apparatus: an attempt at comparative ultrastructural cytology in dividing plant cells. Cytobios 3, 257–280 (1969)

    Google Scholar 

  • Pickett-Heaps, J.D.: Plant microtubules. In: Dynamic aspects of plant ultrastructure, p. 219–255, A.W. Robards, ed. London: McGraw-Hill 1974

    Google Scholar 

  • Spurr, A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct. Res. 26, 31–43 (1969)

    PubMed  Google Scholar 

  • Venable, J.H., Coggeshall, R.: A simplified lead citrate stain for use in electron microscopy. J. Cell Biol. 25, 407–408 (1965)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants from the Australian Research Grants Committee and the Reserve Bank of Australia (to T.P. O'B.) while one of us (I.N.M.) received financial assistance from the Australian Government through the Commonwealth Scholarship and Fellowship Plan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, I.N., O'Brien, T.P. Cytokinesis in the developing wheat grain; Division with and without a phragmoplast. Planta 130, 57–67 (1976). https://doi.org/10.1007/BF00390845

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390845

Keywords

Navigation