Skip to main content
Log in

Determination of the sedimentary microbial biomass by extractible lipid phosphate

  • Published:
Oecologia Aims and scope Submit manuscript

Summary

The measurement of lipid phosphate is proposed as an indicator of microbial biomass in marine and estuarine sediments. This relatively simple assay can be performed on fresh, frozen or frozen-lyophilized sediment samples with chloroform methanol extraction and subsequent phosphate determination. The sedimentary lipid phosphate recovery correlates with the extractible ATP and the rate of DNA synthesis. Pulse-chase experiments show active metabolism of the sedimentary phospholipids. The recovery of added 14C-labeled bacterial lipids from sediments is quantitative. Replicate analyses from a single sediment sample gave a standard deviation of 11%. The lipid extract can be fractionated by relatively simple procedures and the plasmalogen, diacyl phospholipid, phosphonolipid and non-hydrolyzable phospholipid content determined. The relative fatty acid composition can be readily determined by gas-liquid chromatography.

The lipid composition can be used to define the microbial community structure. For example, the absence of polyenoic fatty acids indicates minimal contamination with benthic micro-eukaryotes. Therefore the high content of plasmalogen phospholipids in these sediments suggests that the anaerobic prokaryotic Clostridia are found in the aerobic sedimentary horizon. This would require anaerobic microhabitats in the aerated zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aalbers, J.A., Nieber, L.T.: A method for the quantitative determination of phosphonate phosphorous in the presence of organic and inorganic phosphate. Anal. Biochem. 24, 443–447 (1968)

    PubMed  Google Scholar 

  • Bartlett, G.L.: Phosphorus assay in column chromatography. J. biol. Chem. 234, 466–468 (1959)

    PubMed  Google Scholar 

  • Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)

    Google Scholar 

  • Bobbie, R.J., Morrison, S.J., White, D.C.: Effects of substrate biodegradability on the mass and activity of the associated estuarine microbiota. Appl. environ. Microbiol. 35, 179–184 (1978)

    Google Scholar 

  • Christensen, J.P., Packard, T.T.: Sediment metabolism from the northwest African upwelling system. Deep Sea Res. 24, 331–343 (1977)

    Google Scholar 

  • Christian, R.R., Hall, J.R.: Experimental trends in sediment microbial heterotrophy: Radioisotopic techniques and analysis. In: Ecology of marine benthos (B.C. Coull, ed.), pp. 67–88. Columbia: University of South Carolina Press 1977

    Google Scholar 

  • Dale, N.G.: Bacteria in intertidal sediments: Factors related to their distribution. Limnol. Oceanogr. 19, 509–518 (1974)

    Google Scholar 

  • Daley, R.J., Hobbie, J.E.: Direct counts of aquatic bacteria by a modified epifluorescence technique. Limnol. Oceanogr. 20, 875–882 (1975)

    Google Scholar 

  • Dittmer, J.C., Wells, M.: Qualitative and quantitative analysis of lipids and lipid components. In: Methods of enzymology, Vol. 14 (J.M. Lowenstein, ed.), pp. 482–530, New York: Academic Press 1969

    Google Scholar 

  • Erwin, J.A.: Fatty acids in eukaryotic microorganisms. In: Lipids and biomembranes of eukaryotic microorganisms (J.A. Erwin, ed.), pp. 42–143. New York: Academic Press 1973

    Google Scholar 

  • Fairbairn, D.: Lipid components and metabolism of Acanthocephala and Nematoda. In: Chemical zoology, Vol. III, (M. Florkin, B.T. Scheer, eds.), pp. 361–378. New York-London: Academic Press 1969

    Google Scholar 

  • Fenchel, T.K., Jorgensen, B.B.: Detritus food chains of aquatic ecosystems: The role of bacteria. Adv. microbial Ecol. Vol. 1, 1–58 1977

    Google Scholar 

  • Fenchel, T.M., Riedl, R.J.: The sulfide system: A new biotic community underneath the oxidized layer of marine sand bottoms. Marine Biol. 7, 255–268 (1970)

    Google Scholar 

  • Frerman, F.E., White, D.C.: Membrane lipid changes during formation of a functional electron transport system in Staphylococcus aureus. J. Bacteriol. 94, 1868–1874 (1967)

    PubMed  Google Scholar 

  • Goldfine, H., Hagen, P.-O.: Bacterial plasmalogens. In: Ether lipids, chemistry and biology (F. Snyder, eds.), pp. 329–350. New York: Academic Press 1972

    Google Scholar 

  • Hargrave, B.T.: Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limnol. Oceanogr. 17, 583–596 (1972)

    Google Scholar 

  • Karl, D.M.: Occurrence and ecological significance of GTP in the ocean and in microbial cells. Appl. environ. Microbiol. 36, 349–355 (1978)

    Google Scholar 

  • Karl, D.M., Holm-Hansen, O.: Effects of luciferin concentration on the quantitative assay of ATP using crude luciferase preparations. Analyt. Biochem. 75, 100–112 (1976)

    PubMed  Google Scholar 

  • Karl, D.M., LaRock, P.A.: Adenosine triphosphate measurements in soil and marine sediments. J. Fish. Res. Bd. Can. 32, 599–607 (1975)

    Google Scholar 

  • Kates, M.: Bacterial lipids. In: Advances in lipid research, Vol. 2 (R. Paoletti and D. Kritchevsky, eds.), pp. 17–90 New York: Academic Press 1964

    Google Scholar 

  • Kates, M.: Techniques of lipidology, pp. 393–469. New York: Elsevier Publishing 1972

    Google Scholar 

  • King, J.D., White, D.C.: Muramic acid as a measure of microbial biomass in estuarine and marine samples. Appl. environ. Microbiol. 33, 777–783 (1977)

    PubMed  Google Scholar 

  • King, J.D., White, D.C., Taylor, C.W.: Use of lipid composition and metabolism to examine structure and activity of estuarine detrital microflora. Appl. environ. Microbiol. 33, 1177–1183 (1977)

    Google Scholar 

  • Kittredge, J.S., Roberts, E.: A carbon-phosphorous bond in nature. Science (New York) 164, 37–42 (1969)

    Google Scholar 

  • Lechevalier, M.P.: Lipids in bacterial taxonomy—a taxonomist's view. CRC Critical Reviews in Microbiol. Vol. 7, 109–210 (1977)

    Google Scholar 

  • Lee, C.C., Harris, R.F., Williams, J.D.H., Armstrong, D.E., Syers, J.K.: Adenosine triphosphate in lake sediments: I: Determination. Soil Sci. Soc. Amer. Proc. 35, 82–91 (1971)

    Google Scholar 

  • Lower, W.R., Willett, J.D., Hansen, E.L.: Selection for adaptation to increased temperatures in free-living nematodes. II. Some lipid differences in Panagrellus reavivus. Comp. Biochem. Physiol. 34, 473–479 (1970)

    Article  PubMed  Google Scholar 

  • McCloskey, J.A.: Mass spectrometry of lipids and steroids. In: Methods in enzymology, Vol. 14 (J.M. Lowenstein, ed.), pp. 382–450. New York: Academic Press 1969

    Google Scholar 

  • Moriarty, D.J.W.: A method for estimating the biomass of bacteria in aquatic sediments and its application to trophic studies. Oecologia (Berl.) 20, 219–224 (1975)

    Google Scholar 

  • Moriarty, D.J.W.: Improved method using muramic acid to estimate biomass of bacteria in sediments. Oecologia (Berl.) 26, 317–323 (1977)

    Google Scholar 

  • Pamatmat, M.M., Skjoldal, H.R.: Dehydrogenase activity and adenosine triphosphate concentration of marine sediments in Lindaspollene, Norway. Sarsia 56, 1–11 (1974)

    Google Scholar 

  • Shaw, N.: Lipid composition as a guide to the classfication of bacteria. Adv. appl. Microbiol. 17, 63–108 (1974)

    PubMed  Google Scholar 

  • Sikora, J.P., Sikora, W.B., Erkenbrecher, C.W., Coull, B.C.: Significance of ATP, carbon, and caloric content of meiobenthic nematodes in partitioning benthic biomass. Marine Biol. 44, 7–14 (1977)

    Google Scholar 

  • Snyder, F. (editor): Ether lipids, chemistry and biology, pp. 1–433. New York: Academic Press 1972

    Google Scholar 

  • Tobin, R.S., Anthony, D.H.J.: Tritiated thymidine incorporation as a measure of microbial activity in lake sediments. Limnol. Oceanogr. 23, 161–165 (1978)

    Google Scholar 

  • Tobin, R.S., Ryan, J.F., Afghan, B.K.: An improved method for the determination of adenosine triphosphate in environmental samples. Water Research 12, 783–792 (1978)

    Article  Google Scholar 

  • White, D.C.: Lipid composition of the electron transport membrane of Haemophilus parainfluenzae. J. Bacteriol. 96, 1159–1170 (1968)

    PubMed  Google Scholar 

  • White, D.C., Bobbie, R.J., Herron, J.S., King, J.D., Morrison, S.J.: Biochemical measurements of microbial mass and activity from environmental samples. In: Proc. ASTM Symp. “Native aquatic bacteria, enumeration, activity and ecology” (Minneapolis, June 25, 1977) 1979

  • White, D.C., Cox, R.H.: Identification and localization of the fatty acids in Haemophilus parainfluenzae. J. Bacteriol. 93, 1079–1088 (1967)

    PubMed  Google Scholar 

  • White, D.C., Frerman, F.E.: Fatty acid composition of the complex lipids of Staphylococcus aureus during the formation of the membrane-bound electron transport system. J. Bacteriol. 95, 2198–2209 (1968)

    PubMed  Google Scholar 

  • White, D.C., Tucker, A.N.: Phospholipid metabolism during bacterial growth. J. Lipid Res. 10, 220–223 (1969)

    PubMed  Google Scholar 

  • Wilkinson, B.J., Morman, M.R., White, D.C.: Phospholipid composition and metabolism of Micrococcus denitrificans. J. Bacteriol. 112, 1288–1294 (1972)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, D.C., Davis, W.M., Nickels, J.S. et al. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40, 51–62 (1979). https://doi.org/10.1007/BF00388810

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00388810

Keywords

Navigation