Skip to main content
Log in

Glycerolysis of olive oil: batch operational stability of Candida rugosa lipase immobilized in hydrophilic polyurethane foams

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The operational stability of the Candida rugosa lipase immobilized in a hydrophilic polyurethane foam was evaluated in consecutive batches for the glycerolysis of olive oil in n-hexane, aimed at the production of monoglycerides.

Glycerol controlled the glycerolysis in the system under study, since it is both a substrate and a powerful water binder that reduces the water activity of the reaction medium and of the microenvironment. Two sets of experiments were carried out under different glycerol/triglyceride ratios. After 345 hours of consecutive 23 hours batches no lipase inactivation was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aw :

thermodynamic activity of water

DG:

diglyceride (s)

FAME:

fatty acid methyl ester (s)

FFA:

free fatty acid (s)

FID:

flame ionization detector Gly glycerol

MG:

monoglyceride (s)

TG:

triglyceride (s)

TLC:

thin layer chromatography

References

  1. Sonntag, N.O.V.: Glycerolysis of fats and methyl esters-Status, review and critique. J. Am. Oil Chem. Soc. 59 (1982) 795A-802A

    Google Scholar 

  2. Fisher, L.R.; Parker, N.S.: Effect of surfactants on their interactions between emulsion droplets. In: Dickinson, E., Stainsby G (Eds.): Advances in food emulsions and foams, pp. 45–90. London and New York: Elsevier Applied Science 1988

    Google Scholar 

  3. McNeill, G.P.; Shimizu, S.; Yamane, T.: Solid phase enzymatic glycerolysis of beef tallow resulting in a high yield of monoglyceride. J. Am. Oil Chem. Soc., 67 (1990) 779–783

    Google Scholar 

  4. McNeill, G.P.; Shimizu, S.; Yamane, T.: High-yield enzymatic glycerolysis of fats and oils. J. Am. Oil Chem. Soc. 68 (1991) 1–5

    Google Scholar 

  5. Bornscheuer, U.; Stamatis, H.; Xenakis, A.; Yamane, T.; Kolisis, F.N.: A comparison of different strategies for lipase-catalyzed synthesis of partial glycerides. Biotechnol. Lett. 16 (1994) 697–702

    Google Scholar 

  6. Ferreira-Dias, S.; Fonseca, M.M.R.: Enzymatic glycerolysis of olive oil: a reaction system with major analytical problems. Biotechnol. Techn. 7 (1993) 447–452

    Google Scholar 

  7. Stevenson, D.E.; Stanley, R.A.; Furneaux, R.H.: Glycerolysis of tallow with immobilised lipase. Biotechnol. Lett. 15 (1993) 1043–1048

    Google Scholar 

  8. Ferreira-Dias, S.; da Fonseca, M.M.R.: Production of monoglycerides by glycerolysis of olive oil with immobilized lipases: effect of the water activity. Bioprocess Eng 12 (1995) 327–337

    Google Scholar 

  9. Chang, P.S.; Rhee, J.S.: Characteristics of lipase-catalyzed glycerolysis of triglyceride in AOT-isooctane reversed micelles. Biocatalysis 3 (1990) 343–355

    Google Scholar 

  10. Chang, P.S.; Rhee, J.S.; Kim, J-J.: Continuous glycerolysis of olive oil by Chromobacterium viscosum lipase immobilized on liposome in reversed micelles. Biotechnol. Bioeng. 38 (1991) 1159–1165

    Google Scholar 

  11. Brady, C.; Metcalfe, L.; Slaboszewski, D.; Frank, D.: Lipase immobilized on a hydrophobic, microporous support for the hydrolysis of fats. J. Am. Oil Chem. Soc. 65 (1988) 917–921

    Google Scholar 

  12. Pronk, W.; Kerkhof, P.A.M.; van Helden, C.; van't Riet, K.: The hydrolysis of triglycerides by immobilized lipase in a hydrophilic membrane reactor. Biotechnol. Bioeng. 32 (1988) 512–518

    Google Scholar 

  13. Cuperus, F.P.; Bouwer, S.T.; Krosse, A.M.; Derksen, J.T.P.: Stabilization of lipases for hydrolysis reactions on industrial scale. In: van den Tweel, W.J.J.; Harder, A.; Buitelaar, R.M. (Eds.): Stability and Stabilization of Enzymes, pp. 269–274. Amsterdam: Elsevier Science 1993

    Google Scholar 

  14. Forssell, P.; Parovuori, P.; Linko, P.; Poutanen, K.: Enzymatic transesterification of rapeseed oil and lauric acid in a continuous reactor. J. Am. Oil Chem. Soc. 70 (1993) 1105–1109

    Google Scholar 

  15. Hoq, M.M.; Yamane, T.; Shimizu, S.; Funada, T.; Ishida, S.: Continuous synthesis of glycerides by lipase in a microporous membrane bioreactor. J. Am. Oil Chem. Soc. 61 (1984) 776–781

    Google Scholar 

  16. Ruckenstein, E.; Wang, X.: A novel support for the immobilization of lipase and the effects of the details of its preparation on the hydrolysis of triacylglycerides. Biotechnol. Tech. 7 (1993) 117–122

    Google Scholar 

  17. Kang, S.T.; Rhee, J.S.: Characteristic of immobilized lipase-catalyzed hydrolysis of olive oil of high concentration in reverse phase system. Biotechnol. Bioeng. 33 (1989) 1469–1476

    Google Scholar 

  18. Dias, S.F.; Vilas-Boas, L.; Cabral, J.M.S.; Fonseca, M.M.R.: Production of ethyl butyrate by Candida rugosa lipase immobilized in polyurethane. Biocatalysis 5 (1991) 21–34

    Google Scholar 

  19. Ferreira-Dias, S.; da Fonseca, M.M.R.: The effect of substrate hydrophobicity on the kinetic behaviour of immobilized Candida rugosa lipase. (submitted to Biocatalysis and Biotransformation.)

  20. Lowry, R.R.; Tinsley, I.J.: Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc. 53 (1976) 470–472

    Google Scholar 

  21. Leung, H.K.: Water activity and other colligative properties of foods. 1983 Winter Meeting American Society of Agricultural Engineers, Paper n∘ 83-6508, Chicago 1983

  22. Hayes, D.G.; Gulari, E.: Esterification reactions of lipase in reverse micelles. Biotechnol. Bioeng. 35 (1990) 793–801

    Google Scholar 

  23. van der Padt, A.: Enzymatic acylglycerol synthesis in membrane reactor systems. Ph.D. Thesis. Landbouwuniversiteit te Wageningen, Wageningen, The Netherlands (1993) pp. 151

    Google Scholar 

  24. Macrae, A.R.: Interesterification of fats and oils. In: Tramper, J., van der Plas, H.C., Linko, P. (Eds.): Biocatalysis in Organic Synthesis, pp. 195–208. Amsterdam: Elsevier Science Publishers B.V. 1985

    Google Scholar 

  25. Goderis, H.L.; Ampe, G.; Feyten, M.P.; Fouwé, B.L.; Guffens, W.M.; Van Cauwenbergh, S.M.; Tobback, P.P.: Lipase-catalyzed ester exchange reactions in organic media with controlled humidity. Biotechnol. Bioeng. 30 (1987) 258–266

    Google Scholar 

  26. Goldberg, M.; Thomas, D.; Legoy, M-D.: Water activity as a key parameter of synthesis reactions: The example of lipase in biphasic (liquid/solid) media. Enzyme Microb. Technol. 12 (1990) 976–981

    Google Scholar 

  27. Riscado, M.D.B.: Utilização de Lipases Imobilizadas na Hidrólise de Óleos. Trabalho final da Licenciatura em Engenharia Agro-Industrial Lisboa, Portugal: Instituto Superior de Agronomia (1992) pp. 94

    Google Scholar 

  28. Yang, D.; Rhee, J.S.: Stability of the lipase immobilized on DEAE-Sephadex for continuous lipid hydrolysis in organic solvent. Biotechnol. Lett. 13 (1991) 553–558

    Google Scholar 

  29. Hoq, M.M.; Yamane, T.; Shimizu, S.; Funada, T.; Ishida, S.: Continuous hydrolysis of olive oil by lipase in microporous hydrophobic membrane bioreactor. J. Am. Oil Chem. Soc. 62 (1985) 1016–1021

    Google Scholar 

  30. Tanigaki, M.; Sakata, M.; Wada, H.: Hydrolysis of soybean oil by lipase with a biorectors having two different membranes. J. Ferm. Bioeng. 75 (1993) 53–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors are grateful to Profs. P. Adlercreutz, Technical University of Lund, Sweden, and J.M.S. Cabral, Instituto Superior Técnico, Lisbon, Portugal, for inspiring discussions and advice, to Prof. Helena Pereira, Instituto Superior de Agronomia (ISA), Lisbon, Portugal, for the use of GC equipment and to Mrs. Marlene Dionísio, ISA, for invaluable help with some of the experimental work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira-Dias, S., da Fonseca, M.M.R. Glycerolysis of olive oil: batch operational stability of Candida rugosa lipase immobilized in hydrophilic polyurethane foams. Bioprocess Engineering 13, 311–315 (1995). https://doi.org/10.1007/BF00369563

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369563

Keywords

Navigation