Skip to main content
Log in

Genetic organization and structural features of maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The nucleotide sequence of maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa, was determined. The termini of the 7-kb plasmid are 349-bp inverted repeats (TIRs). Each DNA strand contains a long open reading frame (ORF) which begins within the TIR and extends toward the centre of the plasmid. ORF-1 codes for a single-subunit RNA polymerase that is not closely related to that encoded by another Neurospora plasmid, kalilo. The ORF-2 product may be a B-type DNA polymerase resembling those encoded by terminal protein-linked linear genetic elements, including linear mitochondrial plasmids and linear bacteriophages. A separate coding sequence for the terminal protein could not be identified; however, the DNA polymerase of maranhar has an amino-terminal extension with features that are also present in the terminal proteins of linear bacteriophages. The N-terminal extensions of the DNA polymerases of other linear mitochondrial plasmids contain similar features, suggesting that the terminal proteins of linear plasmids may be comprised, at least in part, of these cryptic domains. The terminal protein-DNA bond of maranhar is resistant to mild alkaline hydrolysis, indicating that it might involve a tyrosine or a lysine residue. Although maranhar and the senescence-inducing kalilo plasmid of N. intermedia are structurally similar, and integrate into mitochondrial DNA by a mechanism thus far unique to these two plasmids, they are not closely related to each other and they do not have any nucleotide sequence features, or ORFs, that distinguish them clearly from mitochondrial plasmids which are not associated with senescence and most of which are apparently non-integrative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Seguin C, Tuffnell PS, Barrell BG (1984) Nature 310:207–211

    Google Scholar 

  • Belcour L, Begel O, Keller A-M, Vierny C (1982) Does senescence in Podospora anserina result from instability of the mitochondrial genome? In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 415–421

    Google Scholar 

  • Bernad A, Zaballos A, Salas M, Blanco L (1987) EMBO J 6:4219–4225

    Google Scholar 

  • Bernad A, Blanco L, Lázaro JM, Martín G, Salas M (1989) Cell 59:219–228

    Google Scholar 

  • Bernad A, Blanco L, Salas M (1990a) Gene 94:45–51

    Google Scholar 

  • Bernad A, Lázaro JM, Salas M, Blanco L (1990b) Proc Natl Acad Sci USA 87:4610–4614

    Google Scholar 

  • Bertrand H (1983) Aging and senescence in fungi. In: Regelson W, Sinex FM (eds) Intervention in the aging process, Part B: Basic research and preclinical screening. Alan R. Liss, New York, pp 233–251

    Google Scholar 

  • Bertrand H, Griffiths AJF (1989) Genome 31:155–159

    Google Scholar 

  • Bertrand H, Chan BS-S, Griffiths AJF (1985) Cell 41:877–884

    Google Scholar 

  • Bertrand H, Griffiths AJF, Court DA, Cheng CK (1986) Cell 47:829–837

    Google Scholar 

  • Blanco L, Bernad A, Blasco MA, Salas M (1991) Gene 100:27–38

    Google Scholar 

  • Browning KS, RajBhandary UL (1982) J Biol Chem 257:5253–5256

    Google Scholar 

  • Burger G, Werner S (1985) J Mol Biol 186:231–242

    Google Scholar 

  • Burger G, Scriven C, Machleidt W, Werner S (1982) EMBO J 1:1385–1391

    Google Scholar 

  • Burke JM, RajBhandary UL (1982) Cell 31:509–520

    Google Scholar 

  • Chan BS-S, Court DA, Vierula PJ, Bertrand H (1991) Curr Genet 20:225–237

    Google Scholar 

  • Court DA, Bertrand H (1991) Nucleic Acids Res 19:1714

    Google Scholar 

  • Court DA, Griffiths AJF, Kraus SR, Russell PJ, Bertrand H (1991) Curr Genet 19:129–137

    Google Scholar 

  • Damagnez V, Tillit J, de Recondo A-M, Baldacci G (1991) Mol Gen Genet 226:182–189

    Google Scholar 

  • Dasgupta J, Chan BS-S, Keith MA, Bertrand H (1988) Genome 30 (suppl 1):318

    Google Scholar 

  • Daubert SD, Bruening G (1984) Methods Virol 8:347–379

    Google Scholar 

  • Davis RH, de Serres FM (1970) Methods Enzymol 17A:79–84

    Google Scholar 

  • deJonge JC, deVries H (1983) Curr Genet 7:21–28

    Google Scholar 

  • Dente L, Cesareni G, Cortese R (1983) Nucleic Acids Res 11:1645–1655

    Google Scholar 

  • Earl PL, Jones EV, Moss B (1986) Proc Natl Acad Sci USA 83:3659–3663

    Google Scholar 

  • Escarmís C, Salas M (1981) Proc Natl Acad Sci USA 78:1446–1450

    Google Scholar 

  • Escarmís C, Salas M (1982) Nucleic Acids Res 10:5785–5798

    Google Scholar 

  • Escarmís C, Gomez A, Carcía E, Ronda C, Lopez R, Salas M (1984) Virology 133:166–171

    Google Scholar 

  • Esser K, Kück U, Lang-Hinrichs C, Lemke P, Osiewacz HD, Stahl U, Tudzynski P (1986) Plasmids of eukaryotes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fütterer J, Winnacker E-L (1984) Curr Topics Micro Immunol 111:41–64

    Google Scholar 

  • Gerendasy DD, Ito J (1987) J Virol 61:594–596

    Google Scholar 

  • Gibbs JS, Chiou HC, Hall JD, Mount DW, Retondo MJ, Weller SK, Coen DM (1985) Proc Natl Acad Sci USA 82:7969–7973

    Google Scholar 

  • Gingeras TR, Sciatky D, Gelinas RE, Bing-Dong J, Yen CE, Kelly MM, Bullock PA, Parsons BL, O'Neill KE, Roberts RJ (1982) J Biol Chem 257:13475–13491

    Google Scholar 

  • Griffiths AJF, Bertrand H (1984) Curr Genet 8:387–398

    Google Scholar 

  • Griffiths AJF, Kraus SR, Barton R, Court DA, Myers CJ, Bertrand H (1990) Curr Genet 17:139–145

    Google Scholar 

  • Heckman JE, Sarnoff J, Alzner-DeWeerd B, Yin S, RajBhandary UL (1980) Proc Natl Acad Sci USA 77:3159–3163

    Google Scholar 

  • Helmer Citterich M, Morelli G, Macino G (1983) EMBO J 2:1235–1242

    Google Scholar 

  • Hermoso JM, Mendez E, Soriana F, Salas M (1985) Nucleic Acids Res 13:7715–7728

    Google Scholar 

  • Hishinuma F, Hirai K (1991) Mol Gen Genet 226:97–106

    Google Scholar 

  • Ikeda RA, Richardson CC (1987) J Biol Chem 262:3790–3798

    Google Scholar 

  • Iwasaki H, Ishino Y, Toh H, Nakata A, Shinagawa H (1991) Mol Gen Genet 226:24–33

    Google Scholar 

  • Jung G, Leavitt MC, Hsieh J-C, Ito J (1987) Proc Natl Acad Sci USA 84:8287–8291

    Google Scholar 

  • Kempken F, Meinhardt F, Esser K (1989) Mol Gen Genet 218:523–530

    Google Scholar 

  • Kennell JC, Lambowitz AM (1989) Mol Cell Biol 9:3603–3613

    Google Scholar 

  • Kotani H, Ishizaki Y, Hiraoka N, Obayashi A (1987) Nucleic Acids Res 15:2657–2664

    Google Scholar 

  • Kouzarides T, Bankier AT, Satchwell SC, Weston K, Tomlinson P, Berrell BG (1987) J Virol 61:125–133

    Google Scholar 

  • Kubelik AR, Kennell JC, Akins RA, Lambowitz AM (1990) J Biol Chem 265:4515–4526

    Google Scholar 

  • Kück U (1989) Exp Mycol 13:111–120

    Google Scholar 

  • Kuzmin EV, Levchenko IV (1987) Nucleic Acids Res 15:6758

    Google Scholar 

  • Kuzmin EV, Levchenko IV, Zaitseva GN (1988) Nucleic Acids Res 16:4177

    Google Scholar 

  • Lambowitz AM (1979) Methods Enzymol 59:421–433

    Google Scholar 

  • Larder BA, Kemp SD, Darby G (1987) EMBO J 6:169–175

    Google Scholar 

  • Leavitt MC, Ito J (1987) Nucleic Acids Res 15:5251–5259

    Google Scholar 

  • Levings III CS, Sederoff RR (1983) Proc Nat Acad Sci USA 80:4055–4059

    Google Scholar 

  • Lichy JH, Field J, Horwitz MS, Hurwitz J (1982) Proc Natl Acad Sci USA 79:5225–5229

    Google Scholar 

  • Lin H-C, Lei S-P, Wilcox G (1985) Anal Bioch 147:114–119

    Google Scholar 

  • Lizardi PM, Luck DJL (1971) Nature New Biol 229:140–142

    Google Scholar 

  • Lonsdale DM, Thompson RD, Hodge TP (1981) Nucleic Acids Res 9:3657–3668

    Google Scholar 

  • Macino G, Morelli G (1983) J Biol Chem 258:13230–13235

    Google Scholar 

  • Masters BS, Stohl LL, Clayton DA (1987) Cell 51:89–99

    Google Scholar 

  • McGraw NJ, Bailey JN, Cleaves GR, Dembinski DR, Gocke CR, Joliffe LK, MacWright RS, McAllister WT (1985) Nucleic Acids Res 13:6753–6766

    Google Scholar 

  • Meinhardt F, Kempken F, Kämper J, Esser K (1990) Curr Genet 17:89–95

    Google Scholar 

  • Meints RH, Hu W, Schuster A, Timothy DH, Levings III CS (1989) Maydica 34:197–205

    Google Scholar 

  • Morelli G, Macino G (1984) J Mol Biol 178:491–507

    Google Scholar 

  • Nargang FE, Bertrand H, Werner S (1978) J Biol Chem 253:6364–6369

    Google Scholar 

  • Nelson MA, Macino G (1987) Mol Gen Genet 206:307–317

    Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Gene 26:101–106

    Google Scholar 

  • Oeser B, Tudzynski P (1989) Mol Gen Genet 217:132–140

    Google Scholar 

  • Paillard M, Sederoff RR, Levings III CS (1985) EMBO J 4:1125–1128

    Google Scholar 

  • Pande S, Lemire EG, Nargang FE (1989) Nucleic Acids Res 17:2023–2042

    Google Scholar 

  • Queen C, Korn LJ (1984) Nucleic Acids Res 12:581–599

    Google Scholar 

  • Quinn JP, McGeoch DJ (1985) Nucleic Acids Res 13:8143–8163

    Google Scholar 

  • Rieck A, Griffiths AJF, Bertrand H (1982) Can J Genet Cytol 24:741–759

    Google Scholar 

  • Robison MM, Royer JC, Horgen PA (1991) Curr Genet 19:495–502

    Google Scholar 

  • Salas M (1991) Annu Rev Bioch 60:39–71

    Google Scholar 

  • Samac DA, Leong SA (1989) Curr Genet 16:187–194

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Savilahti H, Bamford DH (1987) Gene 49:199–205

    Google Scholar 

  • Savilahti H, Bamford DH (1987) Gene 57:121–130

    Google Scholar 

  • Schardl CL, Lonsdale DM, Pring DR, Rose KR (1984) Nature 310:292–296

    Google Scholar 

  • Schardl CL, Pring DR, Lonsdale DM (1985) Cell 43:361–368

    Google Scholar 

  • Shuie S-Y, Hsieh J-C, Ito J (1991) Nucleic Acids Res 19:3805–3810

    Google Scholar 

  • Spicer EK, Rush J, Fung C, Reha-Krantz LJ, Karam JD, Konigsberg WH (1988) J Biol Chem 263:7478–7486

    Google Scholar 

  • Stark MJR, Mileham AJ, Romanos MA, Boyd A (1984) Nucleic Acids Res 15:6011–6030

    Google Scholar 

  • Sussenbach JS, van der Vliet PC (1983) Curr Topics Micro Immunol 109:53–73

    Google Scholar 

  • Turpen T, Garger SJ, Marks MD, Grill LK (1987) Mol Gen Genet 209:227–233

    Google Scholar 

  • Viera J, Messing J (1982) Gene 19:259–268

    Google Scholar 

  • Vierula PJ, Cheng CK, Court DA, Humphrey RW, Thomas DY, Bertrand H (1990) Curr Genet 17:195–201

    Google Scholar 

  • Watabe K, Leusch M, Ito J (1984) Proc Natl Acad Sci USA 81:5374–5378

    Google Scholar 

  • Wong SW, Wahl AF, Yaun P-M, Arai N, Pearson BE, Arai K-i, Korn D, Hunkapiller MW, Wang TS-F (1988) EMBO J 7:37–47

    Google Scholar 

  • Yoo S, Ito J (1989) Virology 170:442–449

    Google Scholar 

  • Yoshikawa H, Ito J (1982) Gene 17:323–335

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C.S. Levings III

Rights and permissions

Reprints and permissions

About this article

Cite this article

Court, D.A., Bertrand, H. Genetic organization and structural features of maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa . Curr Genet 22, 385–397 (1992). https://doi.org/10.1007/BF00352440

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352440

Key words

Navigation