Skip to main content
Log in

Complementation of Saccharomyces cerevisiae acid phosphatase mutation by a genomic sequence from the yeast Yarrowia lipolytica identifies a new phosphatase

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

A Yarrowia lipolytica gene library was constructed in vector YRp7 and transformed into a Saccharomyces cerevisiae strain lacking both major acid phosphatase activities. A 2.18 kb genomic sequence restoring the ability to hydrolyze α-naphthyl phosphate was isolated. Its sequencing revealed an ORF encoding 358 amino acids without significant homology with any known phosphatase. A putative signal peptide and several possible sites for N-glycosylation were identified. Phosphate-regulated expression of the cloned gene was observed in Y. lipolytica. Disruption data favoured the hypothesis that it might encode a minor phosphatase species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altikrete H, Kouri M, Charpentier C, Lematre J, Bonaly R (1984) Phytochemistry 23:1551–1555

    Google Scholar 

  • Ammerer G (1983) Methods Enzymol 101:192–201

    Google Scholar 

  • Bergman LW, McClinton DC, Madden SL, Preis LH (1986) Proc Natl Acad Sci USA 83:6070–6074

    Google Scholar 

  • Bostian KA, Lemire JM, Halvorson HO (1983) Mol Cell Biol 3:839–853

    Google Scholar 

  • Boyer H, Roulland-Dussoix D (1969) J Bacteriol 41:459–472

    Google Scholar 

  • Bradford MM (1976) Anal Biochem 72:248–254

    Google Scholar 

  • Casadaban MJ, Chou J, Cohen SN (1980) J Bacteriol 143:971–980

    Google Scholar 

  • Chifflet S, Torriglia A, Chiesa R, Tolosa S (1988) Anal Biochem 168:1–4

    Google Scholar 

  • Chomczynski P, Sacchi N (1987) Anal Biochem 162:156–159

    Google Scholar 

  • Clarke L, Carbon J (1976) Cell 9:91–99

    Google Scholar 

  • Dagert M, Ehrlich SD (1979) Gene 6:23–28

    Google Scholar 

  • Davidow LS, Apostolakos D, O'Donnell MM, Proctor AR, Ogrydziak DM, Wing RA, Stasko I, DeZeeuw JR (1985) Curr Genet 10:39–48

    Google Scholar 

  • Davidow LS, Kaczmarek FS, DeZeeuw JR, Conlon SW, Lauth MR, Pereira DA, Franke AE (1987a) Curr Genet 11:377–383

    Google Scholar 

  • Davidow LS, O'Donnell MM, Kaczmarek FS, Pereira DA, DeZeeuw JR, Franke AE (1987b) J Bacteriol 169:4621–4629

    Google Scholar 

  • Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 116–217

    Google Scholar 

  • Dibenedetto G (1972) Biochim Biophys Acta 286:363–374

    Google Scholar 

  • Dobson MJ, Tuite MF, Roberts NA, Kingsman AJ, Kingsman SM (1982) Nucleic Acids Res 10:2625–2637

    Google Scholar 

  • Gaillardin CM, Heslot H (1988) J Basic Microbiol 28:161–174

    Google Scholar 

  • Gaillardin CM, Ribet A-M (1987) Curr Genet 11:369–375

    Google Scholar 

  • Gaillardin CM, Charoy V, Heslot H (1973) Arch Microbiol 92:69–83

    Google Scholar 

  • Gaillardin CM Ribet A-M, Heslot H (1985) Curr Genet 10:49–58

    Google Scholar 

  • Günther T, Kattner W (1968) Z Naturforsch 236:77–80

    Google Scholar 

  • Haguenauer-Tsapis R, Hinnen A (1984) Mol Cell Biol 4:2668–2675

    Google Scholar 

  • Heijne G von (1983) Eur J Biochem 133:17–21

    Google Scholar 

  • Heijne G von (1986) Nucleic Acids Res 14:4683–4690

    Google Scholar 

  • Heredia CF, Yen F, Sols A (1963) Biochem Biophys Res Commun 10:14–18

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933

    Google Scholar 

  • Hoffman CS, Winston F (1987) Gene 57:267–272

    Google Scholar 

  • Holm C, Meeks-Wagner DW, Fangman WL, Botstein D (1986) Gene 42:169–173

    Google Scholar 

  • Holmes DS, Quigley M (1981) Anal Biochem 114:193–197

    Google Scholar 

  • Hubbard SC, Ivatt RJ (1981) Annu Rev Biochem 50:555–583

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168

    Google Scholar 

  • Julius D, Brake A, Blair L, Kunisawa R, Thorner J (1984) Cell 37:1075–1089

    Google Scholar 

  • Lopez MC (1989) Purificacion y caracterizacion de una fosfatasa acida reprimible de Yarrowia lipolytica. Estudio del procesamiento y aislamiento de una secuencia genica. Thesis, University of Salamanca, Spain

  • Lopez MC, Dominguez A (1988) J Basic Microbiol 28:249–263

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Meyhack B, Bajwa W, Rudolph H, Hinnen A (1982) EMBO J 1:675–680

    Google Scholar 

  • Miller JH (1972) Experiments in molecular biology. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Moran A, Burguillo FJ, Lopez MC, Dominguez A (1989) Biochim Biophys Acta 990:288–296

    Google Scholar 

  • Nakao J, Miyanohara A, Toh-e A, Matsubara K (1986) Mol Cell Biol 6:2613–2623

    Google Scholar 

  • Nicaud J-M, Fabre E, Beckerich J-M, Fournier P, Gaillardin CM (1989) J Biotechnol 12:285–298

    Google Scholar 

  • Odds FC, Hierholzer JC (1973) J Bacteriol 114:257–266

    Google Scholar 

  • Ogrydziak DM, Cheng SC, Scharf J (1982) J Gen Microbiol 128:2271–2280

    Google Scholar 

  • Oshima Y (1982) Regulatory circuits for gene expression: the metabolism of galactose and phosphate. Regulation of phosphatases. in: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 168–180

    Google Scholar 

  • Perlman D, Halvorson HO (1983) J Mol Biol 167:391–409

    Google Scholar 

  • Rogers DT, Lemire JM, Bostian KA (1982) Proc Natl Acad Sci USA 79:2157–2161

    Google Scholar 

  • Roomans GM, Borst-Pauwels GWFH (1979) Biochem J 178:521–527

    Google Scholar 

  • Rothstein RJ (1983) Methods Enzymol 101:202–211

    Google Scholar 

  • Rubin GM (1974) Eur J Biochem 41:197–202

    Google Scholar 

  • Rudolph H, Hinnen A (1987) Proc Natl Acad Sci USA 84:1340–1344

    Google Scholar 

  • Sanger F, Nicklen S, Coulsen AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sidhu RS, Bollon AP (1990) Yeast 6:221–229

    Google Scholar 

  • Silve S, Monod M, Hinnen A, Haguenauer-Tsapis R (1987) Mol Cell Biol 7:3306–3314

    Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039

    Google Scholar 

  • Tonino GJM, Stein-Parvé EP (1963) Biochim Biophys Acta 67:453–469

    Google Scholar 

  • Trimble RB, Maley F, Watorek W (1981) J Biol Chem 256:10037–10043

    Google Scholar 

  • Weimberg R, Orton WL (1964) J Bacteriol 88:1743–1754

    Google Scholar 

  • Weimberg R, Orton WL (1966) J Bacteriol 91:1–13

    Google Scholar 

  • Xuan J-W, Fournier P, Gaillardin CM (1988) Curr Genet 14:15–21

    Google Scholar 

  • Xuan J-W, Fournier P, Declerck N, Chasles M, Gaillardin CM (1990) Mol Cell Biol 10:4795–4806

    Google Scholar 

  • Zaret KS, Sherman F (1982) Cell 28:563–573

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Hinnen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tréton, B.Y., Le Dall, M.T. & Gaillardin, C.M. Complementation of Saccharomyces cerevisiae acid phosphatase mutation by a genomic sequence from the yeast Yarrowia lipolytica identifies a new phosphatase. Curr Genet 22, 345–355 (1992). https://doi.org/10.1007/BF00352435

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352435

Key words

Navigation