Skip to main content
Log in

Atmospheric cycling and air-water exchange of mercury over mid-continental lacustrine regions

  • Published:
Water Air & Soil Pollution Aims and scope Submit manuscript

Abstract

Atmospheric mobilization and exchange at the air-water interface are significant features of biogeochemical cycling of Hg at the Earth's surface. Our marine studies of Hg have been extended to terrestrial aquatic systems, where we are investigating the tropospheric cycling, deposition and air-water exchange of Hg in the mid-continental lacustrine environs of northcentral Wisconsin. This program is part of a multidisciplinary examination into the processes regulating the aquatic biogeochemistry of Hg in temperate regions. Trace-metal-free methodologies are employed to determine Hg and alkylated Hg species at the picomolar level in air, water and precipitation. We have found Hg concentrations and atmospheric fluxes in these fresh water systems to be similar to open ocean regions of the Northern Hemisphere. A well constrained mass balance for Hg has been developed for one of the lakes, Little Rock Lake, which is an extensively studied clear water seepage lake that has been divided with a sea curtain into two basins, one of which is untreated (reference pH: 6.1) while the other is being experimentally acidified (current pH: 4.7). This budget shows that the measured total atmospheric Hg deposition (ca. 10 µg m−2 yr−1) readily accounts for the total mass of Hg in fish, water and accumulating in the sediments of Little Rock Lake. This analysis demonstrates the importance of atmospheric Hg depositional fluxes to the geochemical cycling and bioaccumulation of Hg in temperate lakes. It further suggests that modest increases in atmospheric Hg loading could lead directly to enhanced levels of Hg in biota. Analogous modeling for monomethylmercury (MMHg) is as yet limited. Nevertheless, preliminary data for the atmospheric deposition of MMHg indicate that this flux is insufficient. to account for the amounts of MMHg observed in biota. An in-lake synthesis of MMHg is implicated. The importance of volatile Hg which is principally in the elemental form, and its evasion to the atmosphere is also illustrated. We suggest that the in-lake production of Hg° can reduce the Hg (II) substrate used in the in-lake microbiological synthesis of MMHg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bloom, N.S. and Crecelius, E.A.:1983, Mar.Chem., 14, 49.

    Article  CAS  Google Scholar 

  • Bloom N.S. and Fitzgerald, W.F.: 1988, Anal. Chim. Acta, 208, 151.

    Article  CAS  Google Scholar 

  • Bloom, N.S.: 1989, Can. J. Fish Aquatic Sci. 46, 1131.

    Article  CAS  Google Scholar 

  • Brezonik, P.L., Baker, L.A., Eaton, J. R., Frost, T.M., Garrison, P., Kratz, T.K., Magunson, J.J., Rose, W.J., Shepard, B.K., Swenson, W.A., Watras, C.J., and Webster, K.E.:1986, Water Air Soil Pollut., 31, 115.

    Article  CAS  Google Scholar 

  • Brosset, C.:1982, Water, Air, and Soil Pollut., 17, 37.

    CAS  Google Scholar 

  • Brosset, C.: 1990, Hg in precipitation and ambient air. A new scenario. International Conference on Mercury as an Environmental Pollutant, Gävle, Sweden.

  • Eilers, J.M., Glass, G.E., Webster, K.E., and Rogalla, J.A.: 1983, Can. J. Fish. Aquat. Sci., 40, 1896.

    Article  CAS  Google Scholar 

  • Fagerström, T. and Jernelöv, A.: 1972, Water Res., 6, 1193.

    Article  Google Scholar 

  • Fitzgerald, W.F. and Gill, G.A.: 1979, Anal. Chem., 51, 1714.

    Article  CAS  Google Scholar 

  • Fitzgerald, W.F., Gill, GA., and Hewitt, A.D.: 1981, Mercury, a trace atmospheric gas. Symposium on the Role of the Ocean on Atmospheric Chemistry, IAMAP Third Scientific Assembly, Hamburg, Federal Republic of Germany, 17–28 August 1981.

  • Fitzgerald, W.F., Gill, G.A., and Hewitt, A.D.: 1983, Air — sea exchange of mercury. In: Trace Metals in Seawater. C.S. Wong; E. Boyle; K.W. Bruland; J.D. Burton and E.D. Goldberg (ed.), NATO Conference Series, IV, Marine Science, V. 9, Plenum Press; New York, pp. 297–316.

    Google Scholar 

  • Fitzgerald, W.F. and Gill, G.A.: 1985, Depositional fluxes of mercury to the oceans. In: Heavy Metals in the Environment. T.D. Lekkas (ed.), V. 1, CEP Consultants Ltd, Edinburgh, U.K., pp. 79–81.

    Google Scholar 

  • Fitzgerald, W.F.: 1986, Cycling of mercury between the atmosphere and oceans. In: The Role of Air-Sera Exchange in Geochemical Cycling. NATO Advanced Science Institutes Series, P. Buat-Menard (ed.), Reidel press, Dordrecht, pp. 363–408.

    Google Scholar 

  • Fitzgerald, W.F.: 1989, Atmospheric and Oceanic Cycling of Mercury. Ch.57 In: Chemical Oceanography V. 10 SEAREX: The Sea/Air Exchange Program. R.A. Duce, J.P. Riley and R. Chester (eds.), Academic Press, London, pp. 151–186.

    Google Scholar 

  • Fitzgerald, W.F. and Watras, C.J.: 1989, Sci. Total Environ., 87/88, 223.

    Article  Google Scholar 

  • GESAMP Working Group 14: Duce, R. A., Liss, P. A., Merrill, J. T., Atlas, E. A., BuatMenard, P., Hicks, B.B., Miller, J.M., Prospero, J.M., Arimoto, R., Church, T.M., Ellis, W.G., Galloway, J.N., Hansen, L.A., Jickells, T.D., Knap, A. H., Reinhardt, K.H., Schneider, B., Soudine, A., Tokos, J.J., Tsunogai, S., Wollast, R., and Zhou, M.: 1989, The atmospheric input of trace species to the world ocean. World Metereological Organization. p. 111.

  • Gill, G.A. and Fitzgerald, W.F.: 1985, Deep Sea Res., 32, 287.

    Article  CAS  Google Scholar 

  • Gill, G.A. and Fitzgerald, W.F.: 1987, Global Biogeochemical Cycles, 1, 199.

    Article  CAS  Google Scholar 

  • Gill, G.A. and Fitzgerald, W.F.: 1987a, Marine Chem., 20, 227.

    Article  CAS  Google Scholar 

  • Gill, G.A. and Fitzgerald, W.F.: 1988, Geochim. et Cosmochim. Acta, 52, 1719.

    Article  CAS  Google Scholar 

  • Hakanson, L.: 1980, Environ. Pollut. (Series B) 1, 285.

    Article  Google Scholar 

  • Iverfeldt, A. and Lindqvist, O.: 1982, Atmosph. Environ., 16, 2917.

    Article  CAS  Google Scholar 

  • Iverfeldt, A. and Persson, I.: 1985, Inorg. Chim. Acta, 103, 113.

    Article  CAS  Google Scholar 

  • Kim, J.P.: 1987, Volatilization and efflux of mercury, from biologically productive ocean regions. PhD Thesis, The University of Connecticut p.281.

  • Kim, J.P. and Fitzgerald, W.F.: 1986, Science, 231, 1131.

    Article  CAS  Google Scholar 

  • Lindqvist, O., Jernelöv, A., Johansson, K., and Rodhe, H.: 1984, Mercury in the Swedish Environment: Global and Local Sources. National Swedish Environment Protection Board. p. 105.

  • Lindqvist, O. and Rodhe, H.: 1985. Tellus, 37b, 136.

    Article  CAS  Google Scholar 

  • Magnuson, J.J., Bowser, C.J., and Kratz, T.K.: 1984, Verh. Internat. Verein. Limnol. 22, 533.

    Google Scholar 

  • Nriagu, J.O.: 1989, Nature, 338, 47.

    Article  CAS  Google Scholar 

  • Nriagu, J.O. and Pacyna, J.M.: 1988, Nature, 333, 134.

    Article  CAS  Google Scholar 

  • NAS: 1978, An Assessment of Mercury in the Environment. National Academy of Sciences (NAS), Washington, 185 p.

    Google Scholar 

  • Rada, R.G., Wiener, J.G., Winfrey, M.R., and Powell, D.E.: 1989, Arch. Environ. Contam. Toxicol., 18, 175.

    Article  CAS  Google Scholar 

  • Scheider, W.A., Jeffries, D.S., and Dillon, P.J.: 1979, J. Great Lakes Res., 5, 45.

    Article  CAS  Google Scholar 

  • Slemr, F., Seiler, W., and Schuster, G.: 1981, J. Geophy. Res., 86, 1159.

    Article  CAS  Google Scholar 

  • Slemr, F., Schuster, G., and Seiler, W.: 1985, J. Atmosph. Chem., 3, 407.

    Article  CAS  Google Scholar 

  • Sloan, R. and Schofield, C.L.: 1983, Northeast. Environ. Sci., 2, 165.

    CAS  Google Scholar 

  • Stumm, W. and Morgan. J.J.: 1981. Aquatic Chemistry. John Wiley & Sons, New York, p. 780.

    Google Scholar 

  • Vandal, G.M., Mason, R.P., and Fitzgerald, W.F.: 1990. Cycling of volatile mercury in temperate lakes. International Conference on Mercury as an Environmental Pollutant, Gävle, Sweden.

  • Wanninkhof, R., Ledwell, J.R., and Broecker, W.S.: 1985. Science, 227, 1224.

    Article  Google Scholar 

  • Watras, C.J. and Frost, T.M.: 1989, Arch. Env. Contam. Toxicol., 18, 157.

    Article  Google Scholar 

  • Watras, C.J., Bloom, N.S., Fitzgerald, W.F., Hurley, J.P., Rada, R.A., and Wiener, J.G.: 1990, Sources and fates of mercury in a remote temperate lake (in preparation).

  • Westöö, G.: 1966, Acta Chem. Scand., 20, 2131.

    Article  Google Scholar 

  • Wiener, J.G.: 1987, Trans. N. Am. Wildl. Nat. Resour. Conf., 52, 645.

    Google Scholar 

  • Wiener, J.G., Fitzgerald, W.F., Watras, C.J., and Rada, R.A.: 1990, Environ. Toxicol. Contamin., 9, 909.

    CAS  Google Scholar 

  • Wollast, R., Billen, F., and MacKenzie, F.T.: 1975. Behavior of Mercury in Natural Systems and Its Global Cycle in: Ecological Toxicology Research. NATO Science Committee Conference On Eco-toxicology, A.D. McIntyre and C.F. Mills (ed.), Plenum Press, New York, pp. 145–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzgerald, W.F., Mason, R.P. & Vandal, G.M. Atmospheric cycling and air-water exchange of mercury over mid-continental lacustrine regions. Water, Air, and Soil Pollution 56, 745–767 (1991). https://doi.org/10.1007/BF00342314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00342314

Keywords

Navigation