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Summary. The spectral representations for arbitrary discrete parameter infi- 
nitely divisible processes as well as for (centered) continuous parameter infi- 
nitely divisible processes, which are separable in probability, are obtained. 
The main tools used for the proofs are (i) a "polar-factorization" of an 
arbitrary L6vy measure on a separable Hilbert space, and (ii) the Wiener-type 
stochastic integrals of non-random functions relative to arbitrary "infinitely 
divisible noise". 

O. Introduction 

For the analysis of many statistical and probabilistic problems for stationary 
Gaussian processes, a significant tool is provided by the spectral representations 
of these processes in terms of the "Gaussian noise". Motivated by these consider- 
ations, many authors advocated the need to develop similar spectral representa- 
tions for symmetric stable processes in terms of the "stable noise" and to apply 
these to study the analogous problems for these processes; and such representa- 
tions were in fact developed by several authors (Schilder [27], Kuelbs [13], 
Bretagnolle et al. [2] and Schriber [-28]). With the same motivation, recently 
spectral representations of symmetric semistable processes in terms of the "semi- 
stable noise" are also obtained (Rajput, Rama-Murthy [20]) which are shown 
to be valid for non-symmetric semistable processes as long as e, the index of 
the process, is not 1; more recently, a similar result for non-symmetric stable 
processes with index c~ + 1 is also obtained (Hardin [-7]). Already, the spectral 
representations of symmetric stable processes have successfully been used to 
solve the prediction and interpolation problems (e.g., Cambanis, Soltani [3], 
Cambanis, Miamee [4], Hosoya [9]) and to study the structural and path prop- 
erties (e.g., Cambanis, Hardin and Weron [5], Rootzen [22], Rosinski [25], 
and Rosinski and Woyczynski [26]) for certain subclasses of these processes. 

* The research of both authors was supported partially by the AFSOR Grant No. 87-0136; the 
second named author was also supported partially by a grant from the University of Tennessee 
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In working with Gaussian and symmetric stable processes X =  {Xt : teT} 
and their spectral representations {Sf~ dA}, one discerns two main reasons which 
make these representations useful in solving various questions about the pro- 
cesses X: (a) Many problems of interest about X can be meaningfully reformulat- 
ed in terms of the non-random functions f and the corresponding "noise" 
A (or sometimes in terms of certain parameters characterizing A, e.g., its control 
measure). (b) These reformulated questions can be effectively solved by making 
use of the rich structure of the metric linear space of functions generated by 
{f} and the fact that A enjoys properties very similar to X but, at the same 
time, admits much simpler probabilistic structure. In view of this observation 
and the remarks made in the previous paragraph, it is thus tempting to suggest 
that one should develop spectral representations for each subclass of infinitely 
divisible processes X in terms of the non-random functions f belonging to 
a "nice space" and the "noise" A which exhibits properties similar to that 
of X. But, since different methods of proof may be required to obtain spectral 
representations for different subclasses of infinitely divisible processes, it may 
lead to an unending process; and thus a better question would be to ask: Is 
it possible to develop one procedure whereby, for any given infinitely divisible 
process X, one can choose non-random functions f and "an infinitely divisible 
noise" A such that X a= {~fdA} and, additionally, the following criteria are 
met? 

(i) The "noise" A retains properties similar to X; for example, if X belongs 
to a known class such as e-stable or self-decomposable processes, then A belongs 
to the corresponding class of "noises". 

(ii) The functions ft belong to a linear topological space which is "similar" 
in its structure to that of the linear space of the process X. 

The main theme of this paper is to provide an "essentially" complete affirma- 
tive answer to this question. This is accomplished in two steps: first, we obtain 
the spectal representations for arbitrary discrete parameter infinitely divisible 
processes; and then, using this and some limiting arguments, we obtain the 
representations for continuous parameter infinitely divisible processes which are 
separable in probability. We reiterate that the representing "noise" A and the 
representing functions f chosen for the representations do meet the critera (i) 
and (ii), respectively. In fact, as regards to (ii), we show that the space L generated 
by {f} is a subspace of a suitable Musielak-Orlicz space, which is continuously 
(and linearly) embedded in the linear space L(X) of X. Further, if X satisfies 
some additional conditions (like the ones mentioned above in the continuous 
parameter case), then we show that L is in fact topologically and linearly 
isomorphic to L(X). In addition to the above representations which are valid 
only in law, we also obtain spectral representations which are valid almost 
surely; this, however, requires that the process be redefined on a slightly larger 
probability space. Before we end this paragraph we would like to make a few 
more points: First we note that "integral" representations (in law) of an arbitrary 
infinitely divisible process in terms of the "Poisson noise" are known (Maruyama 
[-15]); but, as neither the noise nor the representing functions necessarily meet 
the requirements we ask for, these representations do not fall in the category 
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of the spectral representations we are interested in this paper. Second we point 
out that our spectral representations (in law) of infnitely divisible processes, 
when specialized to stable and semistable processes, yield, in a unified way, 
all known spectral representations for these processes mentioned in the first 
paragraph above. Finally, we mention the papers (Cambanis [6], Rajput, Rama- 
Murthy [21] and Hardin [8]) which have some relevance to the spectral repre- 
sentations we have discussed above. 

Besides the spectral representations noted above, we also present several 
other results which fall in two broad categories. All of these play a crucial 
role for our proofs of the spectral representation theorems, but we also feel 
that these will be of independent interest. In one category of these results, we 
obtain a "polar factorization" of an arbitrary L6vy measure on 12 in terms 
of a finite measure on the boundary of the unit sphere of 12 and a family of 
L6vy measures on the real line. This factorization is similar in spirit to the 
known factorization of a symmetric stable L6vy measure on R" (L6vy [14]) 
and on 12 (Kuelbs [13]); and plays an analogous role in the development of 
the spectral representations here as did the factorization of a symmetric stable 
L6vy measure for the proofs of the spectral representations of symmetric stable 
processes in [2, 13, 27, 28]. The results in the other category are concerned 
with a systematic study of Wiener-type integrals ~fdA of non-random functions 
with respect to an arbitrary "infinitely divisible noise" A. The main results 
we present here are: (a) a characterization of A-integrable functions in terms 
of certain parameters of A; (b) the identification of the space of A-integrable 
functions as a certain Musielak-Orlicz space; and (c) an isomorphism theorem 
between this Musielak-Orlicz space and a suitable subspace of Lv-space of ran- 
dom variables. The theory of Wiener-type integrals under various hypotheses 
on the "noise" A has a long history (e.g., Urbanik, Woyczynski [30], Urbanik 
[29], Rosinski [23, 24], Schilder [27] and Rajput and Rama-Murthy [20]); 
the development of these integrals presented here is the most general in the 
sense that we require minimal hypotheses both on the "noise" A and the space 
on which integrands and A are defined. I 

The organization of the rest of the paper is as follows: Sect. 1 contains 
the preliminaries; Sect. 2 contains the development of stochastic integrals relative 
to the "infinitely divisible noise" A and a characterization of A-integrable func- 
tions. Sect. 3 is concerned with the identification of the space of A-integrable 
functions as a certain Musielak-Orlicz space and its isomorphism with the sub- 
spaces of Lp-space of random variables. Sect. 4 contains, the spectral representa- 
tion results (in law) for the discrete and the continuous parameter infinitely 
divisible processes; Sect. 4, also contains the "polar factorization" result of L6vy 
measures on 12. Sect. 6 is concerned with the spectral representation of infinitely 
divisible process which hold almost surely. 

i Recently the authors  have received a manuscript  by Kwapien and Woyczynski  entitled Semimar- 
tingale integrals via decoupling inequalities and tangent processes. In this paper, they give a characteriza- 
tion of previsible stochastic processes that  are integrable relative to semimartingales. As a necessary 
first step to obtain this result, they also characterize non- random functions that are integrable relative 
to general " independent  increment noise". This later result, obtained independently of ours, has 
some overlap with our  Theorems 3.3 and 3.4 when specialized to S = [0, oe) and p = 0 
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I. Preliminaries and Some Notations 

In this section, we recall some definitions and known facts; also we fix some 
notations and conventions which we shall use throughout  the paper. 

Let H be a real (finite or infinite dimensional) separable Hilbert space and 
let # be an infinitely divisible (ID) prob. measure on H (i.e., # has a unique 
n-th root  for each n = 1, 2, 3...). As is well-known, for every ID prob. measure 
#, {#~: s > o}, the set of s-th roots of#,  forms a continuous (in the weak topology) 
semigroup under convolution, which is also tight on every finite interval of 
R+=(0 ,  oe). Using this semigroup, we shall now define Gaussian, stable and 
semistable prob. measures on H. These definitions are non-standard but are 
equivalent to the traditional definitions which are usually given in terms of 
weak limits of certain normed sums. We adopted this route mainly because 
we make use of these defining properties of these prob. measures. Before we 
record these definitions, we introduce a few notations: For  a measure v on 
H and a nonzero a in R (the reals), we denote by a. v, the measure defined 
by a. v(B) = v(a- a B), for every Borel set B of H;  further, we shall use the notations 
S(~), S(r, ~) and SD for the phrases "stable of index c~", "semistable of index 
(r, e)" and "self-decomposable", respectively, where 0 < ~ < 2 and 0 < r < 1. Let 
now # be a prob. measure on H, we say # is a S(e) (resp. a S(r, c~)) prob. 
measure if # is ID and 

1 

# t= t~ -# .6~ t ) ,  for all tE(0, 1], (1.1) 
l 

(resp. #r = r ~ . # ,  6~(~)), (1.2) 

where 6xtt) and 6x~r) denote the Dirac measures at the elements x(t) and x(r) 
of H, respectively, and �9 denotes the usual convolution operation. If x(t) in 
(1.1) (resp. x(r) in (1.2)) is 0, the zero element of H and e +  1, then we say 
# is a centered S(ct) (resp. a centered S(r, e)) prob. measure. If e =  1, then we 
say # is a centered S(1) (resp. a centered S(r, 1)) prob. measure only in the case 
when # is a symmetric S(1) (resp. S(r, 1)) prob. measure. If # is ID and (1.1) 
(or equivalently (1.2)) holds with e = 2 ,  then we say # is Gaussian, and, if, in 
addition, x(t)= 0 (or equivalently x(r)= 0), then we say # is centered (or symmet- 
ric) Gaussian. Finally, we say # is a SD prob. measure, if 

# = t . # * v t ,  for all 0<t__<l, (1.3) 

where vt is a prob. measure on H. 
Let now T be an arbitrary index set and X =-{Xt: te T} be a real stochastic 

process, we say X is an ID (resp. a symmetric ID) process if, for every finite 
set {tl . . . . .  t,} of T, ~ (X~ . . . . . .  X~,), the law of (X~I, ..., Xt,), is an ID (resp. 
a symmetric ID) prob. measure on R", the n-Euclidean space. The definitions 
of SD, S(e), S(r, e) and Gaussian processes, of their symmetric counterparts 
and of centered S(c~) and S(r, c~) processes can be stated in the obvious way. 

Now we shall define various ID random (r.) measures. Throughout  the paper, 
unless stated otherwise, we denote, by S, an arbitrary non-empty set and, by 
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5 p, a b-ring (i.e., a ring which is closed under countable intersections) of subsets 
of S with the property: 

There exists an increasing sequence {S,} of sets in 5 f with U S, = S. (1.4) 
n 

Let A = {A(A): A~5  ~ be a real stochastic process defined on some prob. space 
(g2, ~ ,  P). We call A to be an independently scattered r. measure (or r. measure, 
for short), if, for every sequence {A,} of disjoint sets in 5 P, the r. variables 
A(A,),  n :  1, 2, ..., are independent, and, if U A, belong to 5 p, then we also 

have 

A ( U  A , ) = Z  A(A,)  a.s., 
n ii 

where the series is assumed to converge almost surely. In addition, if A(A) 
is a symmetric r. variable, for every A s h  ~ then we call A a symmetric r. measure. 
We call a r. measure A to be an ID r. measure if A (A) is ID; if, in addition, 
A (A) is symmetric, then we call A to be a symmetric ID r. measure. The definitions 
of S(e), S(r, e), SD and Gaussian r. measures, of their symmetric counterparts 
and of centered S(e) and S(r, c~) r. measures can be stated analogously. 

Before we end this section, we would like to mention a few more conventions 
and notations: While writing the Lbvy representation of the characteristic (ch.) 
function ~ of an ID prob. measure # on H one can use many different centering 
functions, we found the centering function 

{~zll if IIz[I < 1 
"c(z)= if ][zl[ >1  

easier to work with in our calculations. We shall, therefore, use this centering 
function throughout.  By a Lbvy measure defined on a Borel subset B of H, 
we shall always mean any measure M on B satisfying ~ rain(l, []z Iq 2 ) d M <  o% 

B 

with M({0})=0, if OeB. Whenever it is important  that M be defined on the 
whole of H, we will do so by assigning M ( B  C) --0; but will use the same notation 
for the extended measure. 

By the statement " M  is a SD Lbvy measure on B" we would mean that 
M is a Lbvy measure of a SD prob. measure on H;  we shall adopt a similar 
convention relative to the L~vy measures of other classes of ID prob. measures 
on H. Finally, for a given topological space X, N(X) will always denote its 
Borel a-algebra. 

II. Infinitely Divisible Random Measures and Stochastic Integrals 

Throughout  this paper A ={A(A): A~5 P} will denote an ID r. measure defined 
on some prob. space (f2, if,  P) (recall that Y stands for a b-ring of subsets 



456 B.S. Rajput and J. Rosinski 

of an arbitrary non-empty set S satisfying (1.4)). Since, for every A e 5  P, A(A) 
is an ID r. variable, its ch. function can be written in the L6vy form: 

~(A(A) ) ( t )=exp{ i t vo (A) - � 89  ~ (e i t~ - l - i t~ (x ) )Fa(dx)} ,  (2.1) 
R 

where - o o  <vo(A)< 0% 0 < v l ( A ) <  oe and FA is a L6vy measure on R. In this 
section, we first show (Proposition 2.1) that there is a one to one correspondence 
between the class of ID r. measures on one hand and the class of parameters 
Vo, vl and F.  on the other. This fact, under various additional assumptions, 
was "essentially" proved in Pr6kopa [18, 19] and Urbanik and Woyczynski 
[30]. We include a proof of this fact here, since this proposition is quite important 
to us and since our proof is very simple and uses only standard arguments 
of the classical probability theory. Through this result we also define 2, the 
control measure of A. Next we show (Lemma 2.3) that F.( . )  determines a unique 
measure on o-(S)x N(R) which admits a factorization in terms of a family of 
L6vy measures p (s, "), s ~ S on R and the measure 2. This fact plays an important 
role throughout the paper; in particular, this helps us derive another form of 
the ch. function of L~(A(A)) in terms of the measures p(s, ") and 2 (Proposi- 
tion 2.5). This form of the ch. function plays a crucial role in obtaining the 
ch. function of the stochastic integral ~fdA (which we also define) (Proposi- 

s 
tion 2.6) and in the proof of the main result of this section (Theorem 2.7) which 
provides an important characterization of A-integrable functions. 

Proposition 2.1. (a) Let A be an ID r. measure with the ch. function given by 
(2.1). Then Vo: 5~-+R is a signed-measure, vl : 5gw-~[0, ~ )  is a measure, FA is 
a Ldvy measure on R, for every AE5~, and 5~A~-*FA(B)~[O, ~ )  is a measure, 
for every B ~ ( R ) ,  whenever Oq~B. 

(b) Let Vo, vl and F. satisfy the conditions given in (a). Then there exists 
a unique (in the sense of finite-dimensional distributions) ID r. measure A such 
that (2.1) holds. 

(c) Let Vo, v 1 and F. be as in (a) and define 

2(A)=]VoJ(A)+v,(A)+ ~ min{1, x 2} FA(dX), 
R 

A ~Sf. 

Then 2: Y~--~[0, ~ )  is a measure such that 2(A,)w-~0 implies A(A,)--*O in prob. 
for every {A,} ~9~ further, if A ( A ' ) ~ 0  in prob. for every sequence {A~,} =~9 ~ 
such that A', c A,  ~ 5 r then 2 (A,) --* O. 

Proof (a) Let {Ak} ~ = 1 be pairwise disjoint sets in 5 ~. By the uniqueness of L6vy's 
representation of the ch. function of an ID distribution, it follows, using 

A = ~(A(Ak)),  that all three set functions vo, vl and F.(B) are 
k k = l  

finitely additive. Let now A, E5 ~, An "~ 0. Since A ( A , ) ~ 0  in prob., we have that 
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vo(A,)-+O, vl(A,)--+0 and ~ min{1, x 2} Fan(dx)--*O. By Chebychev's inequality, 
R we get 

FA.({Ix[ ~_g})~_~g-2 ~ min {1, x 2} FA,(dx ) -*0, 
R 

for every ee(0, 1), which completes the proof of (a). 
(b) The existence of a finitely additive independently scattered r. measure 

A = {A(A): A e 5  P} follows by a standard application of the Kolmogorov Exten- 
sion Theorem (see e.g., [11]). To prove that A is countably additive, let A ,~5  ~, 
A, ",~ 0. Since FA~ > FA 2 ~ . . . .  we get 

l i~  ~ min{1, x z} FA,(dx)< lim ~ min{1, x 2} Fa.(dx)+ lira FA,({[x]>e}) 

< ~ min{1, x 2}FA~(dx), 
{Ixl<e} 

where e > 0  is arbitrary. Letting e--+ 0 we obtain that ~ min{1, x 2} Fa,(dx ) ~0 .  
R 

Since also vo(A,)~O and v l (A,) --* O, we get A(A,)-*O in prob., proving that 
A is countably additive. 

(c) It follows that 2 is countably additive by a similar argument as we used 
for proving the countable additivity of A above. For the last part, decompose 
An  (1) (2) (1) + = A ,  wA,  such that vo(A . )=vo(A,) and vo(A(~2))=-vo(An). Since 
A(A~,~ in prob. as n--+ oo, i=1 ,  2, we get that vo(A(.~))--+O, v~(A(,~ and 

min{1, x 2} Fa#,(dx)--+O as n ~  0% i=1,  2. This implies that 2 (A , )~0 .  []  
R 

Definition 2.2. Since 2(S,)< 0% n = 1, 2,... we may (and do) extend 2 to a o--finite 
measure on (S, a(5~)); we call 2, the control measure of A. 

Lemma 2.3. Let F. be as in Proposition 2.1(a). Then there exists a unique a-finite 
measure F on o-(& ~ x N(R) such that 

F(A• forall ~ S P ,  BeN(R).  

Moreover, there exists a function p: S • N (R)~--~ [0, ~ ]  such that 
(i) p(s, ") is a L~vy measure on N(R), for every seS, 

(ii) p(', B) is a Borel measurable function, for every B e d ( R ) ,  
(iii) ~ h(s, x) F(ds, dx)= ~ [ 5 h(s, x) p(s, dx)] 2(ds), for every a(5 p) xN(R)-  

S x R  S R 

measurable function h: S x R ~ [0, oo]. This equality can be extended (with obvious 
restriction regarding the arithmetic of +_ oo) to real and complex-valued functions h. 

The proof  of Lemma 2.3 relies on a measure-theoretic fact which says that, 
under some minimal assumptions every bimeasure can be represented by a 
measure on the product space. We state this useful fact in the proposition below 
and sketch its proof for the sake of completeness. 

Proposition 2.4. Let (X, N) be a standard Borel space (i.e., a measurable space 
such that ~ is a-isomorphic to the Borel a-algebra of some complete separable 
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metric space), and let (T, d )  be an arbitrary measurable space. Let Qo(A, B) be 
a non-negative function of A ~ d ,  B ~ ,  satisfying: 

(a) for every A e d ,  Qo(A, .) is a measure on (X, N), 
(b) for every BeN,  Qo(', B) is a measure on (T, d) ,  
(c) the measure 20 defined by 2o(A)=Qo(A, X) is a-finite on (T, d) .  

Then there exists a unique measure Q on the product a-algebra d • N such that 

Q(A x B)= Qo(A, B)= ~ q(t, B) 2o (dt), 
A 

for every A e d ,  BeN,  where q: T• N ~ [0, 1] fulfills the following conditions: 

(d) for every t, q(t, .) is a probability measure on N, 
(c) for every B, q(', B) is d-measurable. 

Further, if ql (', ") is some other function satisfying (2.2) below, (d) and (e), then 
off a set of 2o-measure zero, ql (t, ")= q(t, "). 

Sketch of the Proof It is enough to find a measurable family of probability 
measures {q(t, ")}t~T such that 

Qo(A, B)= ~ q(t, B) 2o(dt ) (2.2) 
A 

for all A e~tr B e N  (uniqueness ofq is obvious). Indeed, if such a family {q(t, ")}teT 
is given, then Q defined by 

Q(C) =- ~ S Ic(t, x) q(t, dx) 2o(dt), 
T X 

C e d  x B, is a a-additive measure (see, e.g., [1] p. 97) and the proof  is complete. 
To show the existence of {q(t, ")}t~r note that for each fixed B e N ,  Qo(', B) 

< Qo (', X) = 2o ; therefore one can define the Radon-Nikodym derivative qo (', B) 
=-dQo(', B)/d2o. By the definition of qo, equality (2.2) is satisfied with q replaced 
by qo, further, O<-qo(t, B)<=qo(t, x ) = l  a.e. [2] and qo(t, BlwBz)=qo(t ,  BO 
+qo(t, B2) a.e. [20] for all B, B1, B2~N, Blc~B2=0.  Now one can use the 
method of the construction of regular conditional probabilities (see, e.g. [1], 
Theorem 6.6.2; since (X, N) is a Borel space, one can assume that X = R )  to 
obtain {q(t, ")}t~r satisfying (d) and (e) and such that q(., B)=qo( .  , B) a.e. [--20] 
for each BeM. [] 

Proof of Lemma 2.3. Put 

Go(A, B)= ~ min {1, x 2} Fa(dx), 
B 

A~5 P, BeN(R).  

Since for every BeN(R) ,  Go(',B) is a finite measure on (S,, 5Pc~Sn), n > l ,  
Go(. , B) has a unique extension to a a-finite measure on (S, a(SP)). Denoting 
this extension by Qo(A, B), we see that the assumptions of Proposition 2.4 are 
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satisfied with (T, d ) = ( S ,  a(5~)) and (X, ~ ) =  (R, .~(R)). Thus there exists a mea- 
sure Q on the product  a-algebra a(5 e) • ~ (R)  such that 

Q.(A x B)= Go(A, B)= ~ q(s, B) 2o(ds), 
A 

where 2o(A)= Go(A, R) and q satisfies (d) and (e) of Proposit ion 2.4. Note  that 
2o(A ) < 2(A), for every Aea(Se), which implies that  2 o ~ 2; now define 

p (s, d x) = d~2~ (s) (min { 1, x2})- 1 q (S, d X). 

Then (ii) is satisfied and 

d2o 
min { I, x z } p (s, d x) = @ (s) ~ q (s, d x) = ~ -  (s) < 1, 

R R 

which proves (i) (we may always assume that ~ (s) <__ 1 for all s). Define 

F(C) = ~ [ ~ Ic(s, x)p(s, dx)] 2(ds), (2.3) 
S R 

Csa(5 ~) x ~(R);  then F is a well-defined measure that satisfies, for every A ~ Y  
and B ~ ~ (R), 

F (A x B) = ~ [ ~ p (s, d x)] ),(d s) 
A B 

= ~ [~ (min{1, x2})-lq(s, dx)l 2o(ds) 
A B 

= ~ (min{1, x2})-iQ(ds, dx) 
A x B  

= ~ (min {1, X2}) -1 Go(A, dx)=FA(S); 
B 

(iii) now follows from (2.3) by a standard argument.  This completes the proof  
of Lemma 2.3. [] 

Using Lemmas 2.1 and 2.3 we obtain a very useful form of the ch. function 
of A (A): 

Proposition 2.4. The ch. function (2.1) of A(A) can be rewritten in the form: 

where 

fP(A(A))(t)=exp{ ~ K(t, s) 2(ds)}, t~R, A~5 p, 
A 

K(t, s)= ita(s)--�89 a2(s)+ ~ (e r 1 --it'c(x)) p(s, dx), 
R 
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dvo 2 dvl 
a ( s ) = ~ f  (s), a ( s ) = ~ - ( s )  and p is given by Lemma 2.3. Moreover, we have 

la(s)l+G2(s)+ ~ min{1, x 2} p(s, dx)=l a.e. [2]. 
FI 

(2.4) 

Proof First part immediately follows from (2.1) and Lemma 2.3. Since, for every 
A e ~ we have 

S [la(s)l+aZ(s) + ~ min {1, x 2} p(s, dx)] R(ds) 
A R 

=]Vo](A)+vl(A)+ ~ min{l, x2} F(ds, dx)=2(A)= ~ d2, 
A x l l  A 

(2.4) follows; which completes the proof. [] 

The following definition of the stochastic integral, proposed first by Urbanik 
and Woyczynski [30], is the usual definition of the integrals with respect to 
a vector measure taking values in the L0(f2, ~ ,  P)-space (see also [23]). 

Definition. (a) Let f =  ~ XjIA~ be a real simple function on S, where A j E ~  
j = l  

are disjoint. Then, for every Aea(SP), we define 

S fdA= ~ xjA(Ac~Aj). 
A j = l  

(b) A measurable function f :  (S, a(SZ))--* (R, ~(R)) is said to be A-integrable 
if there exists a sequence {f,,} of simple functions as in (a) such that 

(i) f ,  --*f a.e. [2], 
(ii) for every Aeo-(~), the sequence { ~ f, dA} converges in prob., as n ~ oo. 

A 

I f f  is A-integrable, then we put 

I f d A = P -  lim I f~dA, 
A n ~ ~ 1 7 6  

where {f.} satisfies (i) and (ii). 
We note that S fdA is well defined (i.e., it does not depend on the approxi- 

A 

mating sequence {f,}, Urbanik and Woyczynski [30]). Now we proceed to find 
an expression of the ch. function of S fdA: 

S 

Proposition 2.6. If f is A-integrable, then ~ IK(tf (s), s)l 2(ds)< o% where K is 
given in Proposition 2.5, and s 

.LP(~fdA)(t)=exp{~ K(tf(s),s)2(ds)}, teR. (2.5) 
S S 
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Proof Note  first that (2.5) holds for simple functions. Let {f,} be a sequence 
of simple functions in the definition of A-integral. Define complex measures 
lie,., t~R, n> l, by 

li,,,(A) = j K(tf,(s), s)2(ds), A~a(Sr 
A 

Since, for every t e R  and A~a(Sf), 

lira lit,. (A) = lim log c~( ~ f .  dA)(t) = log 2 (  ~ fdA)(t) = lit(A), 
n~oo n ~ ~ 1 7 6  A A 

it follows, by the Hahn-Saks-Vitali Theorem, that lie is a countably additive 
complex measure. Clearly li, is absolutely continuous with respect to 2. There- 
fore, for every tER, there exists an heeLl(S, a(5r 2; C) such that 

log 5~(~ fdA)(t)=lit(A)= ~ he(s) 2(ds), 
A A 

for every Aea(5~). To end the proof it suffices to show that ht(s)=K(tf(s), s) 
a.e. [2], for each t~R. Let t~R be fixed. By the continuity of K(. ,  s), for each 
ssS, we obtain 

K(tf,(s), s) ~ K(tf(s), s) a.e. [2], (2.6) 

as n ~ oe. Using Egorov's Theorem, we may decompose S as follows: S-- U A j, 
j = 0  

where )~(Ao)=0, )~(Aj)< 0% if j>__ 1, and such that (2.6) holds uniformly in s~Aj, 
j =  1, 2 . . . . .  Hence, for every j >  1 and A~a(5~), 

he(s)2(ds)=lit(Ac~Aj)= lim j K(tf,(s),s)2(ds) 
A n A j  n ~ ~  Ac~Aj 

= ~ K(tf(s),s)2(ds). 
A ~ A j  

It follows that he(s)=K(tf(s), s) a.e. [-23 on Aj, j > l .  Since Ao is a 2-null set, 
the last equality holds a.e. [2] on S. [] 

As we noted in the beginning of this section, the following is the main 
result of this section. It provides a necessary and sufficient condition for the 
existence of ~ f dA in terms of the deterministic characteristics of A. 

s 

Theorem 2.7. Let f :  S ~ R be a a(Se)-measurable function. Then f is A-integrable 
if and only if the following three conditions hold: 

(i) ~ IU(f(s), s)[ 2(ds)< 0% 
S 

(ii) j ]f(s)12a2(s) 2(ds)< 0% 
S 

and 



462 B.S. Ra jpu t  and  J. Ros insk i  

(iii) 

where 

Vo(f(s), s) 2(ds) < c~, 
S 

U (u, s) = u a (s) + 5 (z (x u ) -  u z (x)) p (s, dx), 
R 

Vo(u, s)= ~ min {1, [XU] 2} p(S, dx). 
R 

Further, if f is A-integrable, then the ch. function of ~ fdA can be written as 
S 

(iv) ~J(~fdA)( t )=exp{i tai -1  2~2 zt  ,,r ~ (e ̀ *x- 1 --it'c(x)) Ff(dx)}, 
S R 

where 

and 

ar ~ U(f(s), s) 2(ds), a} = 5 ]f(s)l 2 a2(s) ~(ds), 
S S 

Ff(B)=F({(s, x)eS x R: f(s) xeB\{0}}), BeN(R). 

Proof Assume that f is A-integrable. By Proposition 2.6, we have that 

[2(~fdA)(t)[2= exp {2 5 Re K(tf(s), s) 2(ds)} 
S S 

= exp {2 ~ [--  �89 t2f2 (S) (72 (S) -J- I (COS (tf (s)x)- 1) p (s, dx)] 2 (d s)} 
S R 

= e x p { - - t 2 a } + 2  ~ (cos tx--  l)Ff(dx)} 
g 

is the ch. function of an ID distribution. Hence a ) <  oo and 5 rain{l, x 2} Fs(dx ) 
R 

< oo. This proves (ii) and (iii). Now, since Iv(x)-  sin xl < 2 min {1, x2}, we get 

I U (u, s)[ < [ u a (s) + ~ [sin x u -  u ~ (x)] p (s, d x)l + I ~ [~ (x u ) -  sin x u] p (s, d X)I 
R R 

< Jim K(u, s)[ + 2 Vo(u, s). 

Thus (i) follows by Proposition 2.6 and already proven (iii). In view of (i), (ii) 
and (iii), it is easy to derive (iv) from (2.5). 

Conversely, assume that (i), (ii) and (iii) hold. Let A.= {s: ]f(s)l<n}nS..  
We have that A.eS~ and A..* S. Choose f.'s, simple 5~-measurable functions, 

such that f . (s)=0,  if seA.,  If.(s)-f(s)[<*-, if seA.,  and [f.(s)] =<[f(s)[, for all 
n 

sES. Clearly f . ~ f  everywhere on S, as n-+ oo. Since, for every Aeo-(5 P) and 
n,  m = > l ,  

I [ f .  ( s ) -  f,.(s)] 1A (S)I < 2 If  (S)[, 

by Lemma 2.8, which follows this proof, we get 

I U(EL(s)-f, ,  (s)] 1A (S), S)I < 21U(f(s), s)l + 27 Vo(f(s ), s). 
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Therefore, by the Dominated  Convergence Theorem, we obtain that, for every 
Aea(~), 

tim ~ U([f.(s)- f,.(s)] IA(S), s) .~(ds)=O, 
tl,rtz ~ oo S 

lim ~ [f . (s) - f . , (s) ]  2 1A(S) a2(S) 2(ds)=0,  
tl, r a ~  o0 S 

and 
lim 5 Vo([f,(s)-fm(s)] 1A(S ), S)J~(ds)=0. 

t ~ , m ~  of) S 

In view of (iv), lira 5>(~ [ f . - - f ~  1AdA)(t)~l ,  for every t e R  and Aea(Se). 
n , m  ---~ oo S 

Hence the sequence {Sf ,  dA}2=l converges in prob., for every Aea(SP); i.e., 
A 

f i s  A-integrable. [] 

Lemma 2.8. For every ueR, seS and d>0 ,  

sup {I U(cu, s)l" ]el <d} <dlU(u, s)[ + (1 + d) 3 Vo(u, s). 

Proof Let ]c[ <d.  We have 

U(cu, s)=cua(s)+ ~ ['c(cux)-cuz(x)] p(s, dx) 
R 

=cua(s)+c S D(ux)-u~(x)3 p(s, dx)+ S D(cux)-cT(ux)] p(s, dx) 
R R 

=cU(u,s)+R(c,u,s), 

where R(c, u, s) denotes the last integral. Since z(cux)-cz(ux)=O if luxl < 
rain { 1, I cl - 1 } and I z (c u x ) -  c z (u x)[ __< 1 + d otherwise, we get 

Ie(c,u,s)l<(l +d) S p(s, dx) 
{[ux  I > m i n { 1 , [ c [ -  1}} 

<(l+d)p(s ,  {x: min{1, luxl} >min{1 ,  Ic1-*}}) 

l + d  
< .[ rain {1, [uxl 2} p(s, dx), 

min{1, Icl 1 2 ~ 

by Chebyshev's inequality. Since the last quantity is bounded by (1 + d) 3 V o (u, s), 
the proof  is complete. [] 

Usually it is easier to verify conditions for the existence of ~fdA when A 
is symmetric. The next position shows how to characterize the A-integrable 
functions f, using .4-integrability off ,  where .,t is the symmetrization of A. 

Proposition 2.9. Let A' be an independent copy of A and put A(A)=A(A)--A'(A), 
Ae5  a. Then for an arbitrary function f:  S~-+R, f is A-integrable if and only 
if f is A-integrable and the condition (i) of Theorem 2.7 is fulfilled. 
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Proof The Proposition follows immediately from Theorem 2.7 because 

LP(A(A))(t) =exp { 5 [- t2o-2(s)+2 1 (cos tx--  1)fi(s, dx)] 2(ds)}, 
A R 

where ~(s, B)=p(s, B)+ p(s, - B), BE~(R). [] 

III. Continuity of the Stochastic Integral Mapping and Identification 
of A-integrable Functions 

In this section we shall identify the set of A-integrable functions as a certain 
Musielak-Orlicz modular space, and shall prove the continuity of the mapping 
f +  5fdA from this modular space into Lp(f2, P). In addition, under certain 

s 

conditions on A, we shall show that the inverse of this map is also continuous. 
We also point out that these results on stochastic integrals unify and extend 
the corresponding results of [23, 29, 30]; further, using these results, we show 
that one can easily recover, in a unified way, the results concerning stochastic 
integrals and the space of A-integrable functions obtained in [2, 7, 20, 27]. 

We begin with some preliminaries. Let q be a non-negative number such 
that 

(MC)q EIA(A)Iq<c~, forall A~5 g. 

Throughout this section, we shall assume that the above condition is satisfied 
and q~[0, oo) is fixed (note that every A satisfies (MC)q with q=0). Hence, 
using the standard fact which states that for an ID distribution p with L6vy 
measure G, ~ [xlq#(dx) is finite if and only if ~ [x[qG(dx) is finite, we have 

R {1~1 > i} 

[ ~ Ixlqp(s, dx)]~(ds)  = ~ Ixl~gA(dX) < ~ ,  
A {txl> 1} {Ixl> 1} 

for every AE5 e (recall F a is the Ltvy measure of 5Y(A(A))). Hence 2-a.e. 

S Ixlqp(s, dx) <~" 
{Ixl > i} 

(3.1) 

Thus, without loss of generality, we may (and do) assume that (3.1) holds for 
all seS. Define, for O<p<q, ueR and seS, 

where 

and 

,ir,,,(u, s)= U*(u, s)+u~r:(s)+ ~(u, s), 

U*(u, s)= sup I U(cu, s)[ 
Ic1_-<1 

v,,(u, s) = ~ {luxtPI(luxl > 1} + luxl 2 I(luxl ~ 1)} p(s, dx). 
- - e l , )  

(3.2) 
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Next we state and prove two lemmas which will be needed for the identifica- 
tion of the space of A-integrable functions as well as for the proof of the conti- 
nuity of the stochastic integral mapping and its inverse. 

Lemma 3.1. The following are satisfied: 

(i) for every s~S, obp(., s) is a continuous non-decreasing function on [0, oo) 
with ~bp(O, s)=0,  

(ii) ,t({s: ~p(U, s)= for some u=u(s)q=O})=O, 
(iii) there exists a numerical constant C > 0 such that 

~bp(2 u, s)< C~p(u, s), 
for all u > 0 and s e S. 

Proof It is easy to prove that U( ' ,  s) is continuous; using this one proves as 
easily that U* (', s) is also continuous. Using this fact and the Dominated Con- 
vergence Theorem, we establish the continuity of ~bp(., s). To see that ~p(., s) 
is non-decreasing we observe that U* (-, s) is non-decreasing and, for each fixed 
U, 

1 4 _ _ ( m i n { l x u l  p, Ixul 2} if 0_-<p_-<2~ 
[uxlPI(lxul> l )+lxul2I([xul  < 

)=(max{lxulP,  lxul 2} if p > 2  
(3.3) J 

is increasing in x > 0 .  Now we prove (ii). If ~p(u, s)=0,  for some u=u(s),t~O, 
then p(s, R)=0 ,  aZ(s)=0 and U(u, s)=0. By the definition of U(u, s), we get 
a(s) = 0. Therefore, 

So - {s: ~p (u, s) = 0 for some u = u (s) + 0} 

= {s: a(s)=aZ(s)=p(s, R)=0}.  

(Note that above equality also establishes the measurability of S o.) Let A be 
any measurable subset of So. Since vo(A)= S a(s)2(ds)=O, we get ]Vo[(So)---0. 
Thus A 

2(So) = Ivol(So)+ S a2(s) 2(as)+  ~ min{1, Ixl 2} p(s, dx)=o.  
So So 

To prove (iii), we use Lemma 2.8 and (3.3), and get 

�9 p(2u, s)<21U(u, s)l +27  Vo(u, s)+4uZa2(s)+(2P+4) Vp(u, s) 

<(2P+31)~p(U,S). [] 

Lemma 3.2. Let {I~,} be a sequence of  ID.  prob. measures on R with Lkvy represen- 

2 Gn). Assume #n ~ ,6o,  equivalently, a , ~ 0 ,  2 tation: #n ~(an, a , ,  a, ~ 0 and 

S min{1, [xl 2} d G , ~ O .  Then, for any b>O, 
- s o  

Ixlb#,(dx)--+O~ ~ ]xlbGn(dx)--'O. 
R {Ixl> 1} 
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(It is, of course, assumed here that ~ Ixlbd#,<oo (and hence ~ [x[OG,(dx) 
< oo), for all n.) g {l~l> i} 

Proof Under  the hypotheses of the Lemma, it is easy to prove that 

l imsup  ~ [xrbG,(dx)=O.a>lim ~ IxlbG,(dx)=O, (3.4) 
t ~ m  n {Ixl>t} n { I x l > l }  

and 
l imsup  5 [x[b#,(dx)=O~=>lim ~ Ixf #,(dx)=O. (3.5) 
t-+oo n { [x l> t  } n { [ x [ > l}  

Now assume ~ IxlbG,(dx)-oO, hence, by (3.4) and Theorem2 of [10], 
{Ixl > 1} 

(note that {#.} is compact) l imsup  ~ Ixlbp.(dx)=O. Thus, by (3.5), 
t - o r e  n {Ixl>t} 

[xlb#,(dx)--+O. But, as #,--e--~6 o, we have ~ [xlb#,(dx)~O. This 
{Ixl > 1) {Ix] < 1} 

proves ~]x[b#,(dx)-+O. Conversely, if 5]x[b#,(dx)~O, then, by (3.5), 
R R 

lira sup ~ [x[b#,(dx)=O. Thus by [10] again, lira sup ~ [xlbG,(dx)=O; 
t ~ o o  n {l~l>t} t ~ ~o ~ ( I x l  > t} 

which along with (3.4) imply that lira 5 Ix[ b G, (dx) = 0. ff] 
n { I x l > * }  

In order to get ready to state and prove our first main result of this section, 
we will need a few more notations and definitions: 

We define the so-called Musielak-Orlicz space 

L%(S; 2)= {feLo(S; 2): 5 ~bp(lf(s)l, s) 2(ds)< oo}. 
s 

The following properties of L%(S; 2) (which are well-known for general Musie- 
lak-Orlicz spaces generated by functions which satisfy (i), (ii) and (iii) of Lem- 
ma 3.3) will be used throughout this paper: The space L%(S; 2) is a complete 
linear metric space with the F-norm defined by 

[[ f ][ ~p = inf{c > O: y 4~p(C- ~ If(s)[, s) 2(ds) < c}. 
s 

Simple functions are dense in L%(S; 2) and the natural embedding of L,p (S; 2) 
into Lo(S; 2) is continuous (here Lo(S; 2) is equipped with the topology of 
convergence in 2 measure on every set of finite 2-measure). Finally, PIf, II ~p--+ 0 
if and only if ~ ~p(If,(s)[, s)2(ds)--+O. For these and further facts concerning 

s 

Musielak-Orlicz spaces, we refer the reader to [16]. 

Theorem 3.3 Let 0 <= p < q and q~p be as in (3.2). Then 

{f: f is A-integrable and E [ ~ f dA[ p < oo} = L~p(S; 2), 
s 
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and the linear mapping, 
L%(S; 2) ~f~--~ j f dA ~Lv(f2; P) 

S 

is continuous (note that p = 0 here signifies that L,o(S; 2)= {f: f is A-integrable}). 

Proof. Let fsL%(S; 2); i.e. J ~p(lf(s)[, s )2(ds)< oo. Then, it is easy to see that 
S 

the conditions (i), (ii) and (iii) of Theorem 2.7 are satisfied, so, f is A-integrable. 
If Fy denotes the L6vy measure of 5f(JfdA) (see Theorem 2.7), then we have 

S 

S 
(lul > 1} 

[uVFy(du)= j [ j If(s) xVp(s, dx)] 2(ds) 
S {[f(s)x]> 1} 

= ~ eAl/(S)[, s),~(ds)< Go; 
S 

(3.6) 

and, consequently, E l i  fdA] p < oo. 
S 

Conversely, assume that f is A-integrable and E l i  fdA f <  oo. By Lemma 2.8 
S and (i) and (iii) of Theorem 2.7, we get 

j U* (If(s)l, s)2(ds)____ j [U(f(s), s)l 2(ds)+ 8 j Vo (f(s), s )2(ds)< oe. 
S S S 

Since E ] j f d A f < o o ,  we have j" 
S {]u[ > 1} 

of Theorem 2.7, we get 

[xfFi(dx)<oo; hence, by (3.6) and (iii) 

j Vv(f(s),s)2(ds)< j IxiVFr Vo(f(s),s)2(ds)<oo. 
S {]ul > 1} S 

Combining the above and (ii) of Theorem 2.7, we get feL~p(S; 2). 
Let f ,  ~ 0  in L%(S; 2); i.e. 

a'~(IL(s)l, s) 2(ds) ~ o as n ~ oo. (3.7) 
S 

2 and F, be, respectively, the centering constant, the variance and Let a., a.  
the L6vy measure in the canonical representation of the ch. function of 

2 ~ 0 and 5Y(~f. dA) (see (iv) of Theorem 2.7). Then (3.7) implies that a. ~ 0, a.  
S 

[. {IxlpI(lxl > 1)+ x2I(lx] < 1)} F,,(dx)~0, 
R 

as n ~ oo. Thus, in view of Lemma 3.2, E[~ f,  dA[ v--, O, as n--, oo if p > 0; and, 
S 

if p = 0, then clearly ~ f,  dA ~ 0 in prob. []  
S 
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We shall study now the conditions under which the mapping f ~  ~ f d A  is 
s 

an isomorphism. First we note that, in general, this mapping is not one-to-one. 
Indeed, if A(ds)=ds  is the (deterministic) Lebesque measure on S=  [-0, 1], then 

obviously f~--~ ~ f ( s )ds  is not one-to-one. In view of this, one needs to impose 
0 

some suitable condition on A (or on some of its parameters) which, on one 
hand, alleviates this difficulty and makes the mapping an isomorphism but, 
at the same time, is weak enough so that it is satisfied by a large class of 
ID r. measures. We found the following condition quite satisfactory with regard 
to these criteria; we refer this as (IC) (I for isomorphism) condition: 

There exists a constant C = C(p, q), 0 __<p < q,/  

(IC)q-= (IC)/such that for every u > 0  / 

[[U(u,s)[<C{u2o-2(s)+Vp(u,s)} a.e. [43. J 

The following is our second main result of this section. 

Theorem 3.4. Let (IC) be satisfied for some 0 < p <= q. Then the mapping f ~ ~ f dA 

is an isomorphism from L~p(S; 4) into Lp(f2; P). Moreover, s 

{ [. f dA:  feL~p(S; 4)} =lin{A(A): Ae5~}L,(~;e). 
S 

Proof By Lemma 2.8 and (IC), we get, for every u > 0, 

u*  (u, s) __< I u (u, s)l + 8 Vo (u, s) 
< C1 {u 2 o -2 (s) + Vp (u, s)} (3.8) 

a.e. [4], where C1 < C + 8 .  
Let E[ ~ f ,  dA iv ~ O, if p > 0 or ~ f ,  dA ~ 0 in prob. if p = 0. By Theorem 2.7 (iv) 

S S 

and Lemma 3.2, we have 

and 

IL ( s)l Z a2 (s) 4 ( d s) = o-~r. --+ 0 
S 

Vp(L(s), s) 4(ds)= S {IxlPl(Ixl > 1)+ IxlZI(Ix[ ~ 1)} f f . (dx)  ~ O, 
S 11 

as n ~ oe, where a}, and Fs. are, respectively, the variance and the L6vy measure 
in the canonical representation of the ch. function of S ( ~ f ,  dA). Thus, by (3.8), 

we have s 

U*([f,(s)l,s)2(ds)~O as n ~ o e .  
S 
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Therefore, ~ ~p(If,(s)[, s) 2(ds) ~ 0; i.e., f ,  --+ 0 in L~p(S; s This proves the invert- 
s 

ability of the map f ~  ~ fdA and the continuity of the inverse map. 
s 

Using the fact that simple functions are dense in Lop(S; 2) and that 

lin{A(A): A~5 a} = { ~ f d A : / i s  simple}, 
S 

the proof of the last statement of the theorem is easy. [] 

Corollary 3.5. Let (IC) be satisfied for some O<__p<q and ~f, dA --~0 in Lp(f2; P). 

Then f ,  ~ 0 in 2 on any set of 2-finite measure, s 

Proof It follows from Theorem 3.4 and the earlier noted fact that the natural 
embedding of Lop into Lo(S; 2) is continuous. [] 

The (IC) condition is imposed on certain parameters of A and not directly 
on A; this limits the usefulness of Theorem 3.4 somewhat. Thus, it is desirable 
to find sufficient conditions directly in terms of A which guarantee (IC) and 
hence also the fact that the integral mapping is an isomorphism. We shall provide 
such sufficient conditions in Propositions 3.6 and 3.8. 

Proposition 3.6. The condition (IC) is satisfied under any of the following two 
hypotheses on the ID r. measure A and the real number p: 

(i) A is symmetric and 0 < p <= q arbitrary, 
(ii) E[A(A)]=Ofor all A and l <p<=q. 

Proof That (IC) holds under (i) is trivial, since in this case a(s)=0 and p(s, ") 
is symmetric, which implies that U( ' ,  s ) - 0  a.e. [2]. Now we prove that (IC) 
holds under (ii). Since EIA(A)lq< 0% q>  1 and E{A(A)} =0, we have 

2 (A (A))(t) = exp { - 1 t 2 Y1 (A) + ~ (e itx - 1 - it x) Fa (d x)} 
R 

=exp{i tvo(A)- l t2v l (A)+ ~ (eitX-l--itz(x))FA(dx)}, (3.9) 
R 

where vo(A)= ~ [~ (x ) -x ]  FA(dx ). Hence, by Proposition 2.5, a.e. [2], 
R 

a(s)= S (z(x)-x)p(s,  dx) and U(u,s)= ~ (z(ux)-ux)p(s,  dx). (3.10) 
I I  I I  

Thus we get, for every p > 1, 

IU(u,s)l~ 
{luxl > 1} 

< f = 

{[uxl > 1} 

I~(ux)-uxl p(s, dx) 

lu xl p (s, d x) ~ Wp(u, s) 

a.e. [2], which concludes the proof. [] 



470 B.S. Rajput and J. Rosinski 

As we noted in Sect. II, our definition of stochastic integrals is the same 
as advocated first by Urbanik and Woyczynski [30] and Urbanik [29] and 
later adopted by Rosinski [23]. Thus our results on stochastic integrals of real 
functions relative to arbitrary ID r. measures do unify and extend the pertinent 
results of these authors. Another approach of defining stochastic integrals rela- 
tive to symmetric S(~), and symmetric S(r, ~) and centered S(r, c~), r. measures 
A have been taken in [2, 27] and [-20], respectively. In these papers, the integral 
~fdA is defined as Lp-limit, 0 < p < c~, of a sequence of integrals of simple functions 
relative to A; and it is shown that the space of A-integrable functions is the 
L~(2)-space and that the integral map L~(2)~f~--~fdA~Lp(P) is a topological 
and linear isomorphism. The rest of this section is devoted to show that our 
integrals as well as the space L~p of A-integrable function do coincide with 
those of [-2, 27] and [20], when A is symmetric S(~), and symmetric S(r, ~) 
or centered S(r, ~) r. measures, respectively; and, that the integral map satisfies 
the above cited property. Thus, we recover all these results of [-2, 27, 20] in 
a unified way. Finally, towards the end of this section we point out certain 
facts about A-integrable functions for certain S(r, 1) r. measures. 

If A is a centered S(c~) (resp. S(r, c~)) r. measure where 1 < ~ < 2 ,  then 
E]A(A)lq< o% for any q<a, and EA(A)=O, for every Ae5  P. Hence the ch. func- 
tion of A(A) is of the form (3.9), where v 1 - 0  and FA is an S(c~) (resp. S(r, a)) 
L6vy measure. 

IrA is a centered S(a) (resp. S(r, ~)) r. measure and 0<c~< 1, then 

~(A(A))(t) = exp { ~ (e i tx -  1) Fa(dx)} 
R 

=exp{itvo(A)+ ~ (eit~-l-itz(x))FA(dX)}, (3.11) 
II 

where vo(A)= ~ z(x)Fa(dx ) and F a is an S(e) (resp. S(r, e)) L6vy measure for 
R 

every AeS(. Therefore, we have (see Proposition 2.5 and Theorem 2.7) 

a(s)= ~ z(x) p(s, dx) and U(u,s)= ~ z(ux) p(s, dx) a.e. [2]. (3.12) 
II R 

Finally, if A is a centered S(1) (resp. S(r, 1)) r. measure, then A is symmetric 
and the ch. function of A (A) is given by (2.1) with v0-= v~-= 0 and FA a symmetric 
S(1) (resp. S(r, 1)) L6vy measure, for every A~5 ~. 

In the following lemma, we state the fact that the conditional L6vy measures 
p(s, .) of S(cQ (resp. S(r, ~)) r. measure A are S(~) (resp. S(r, ct)). The proof of 
this fact is postponed to the next section mainly for convenience but also because 
this fact has more relevance there. Formula (3.15) below follow from (3.14) 
by a standard argument. The proof of (3.14) can be found in [20]. 

Lemma 3.7. (a) Let A be a S(~) r. measure. Then a.e. [-2] 

p(s, dx)=cl(s)I(x>O)x-~-~dx+c_~(s)I(x<O)lxl-l-~dx, (3.13) 

where cl, c_ ~ : S~--~[0, oo) are ~(S)-~[-O, oo) measurable. 
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(b) Let A be a S(r, c~) r. measure. Then, for 2 almost all seS, 

p(s, B)= r"p(s, (r~B)c~ A) for all B e N ( R ) ,  (3.14) 
n =  - - o o  

1 
where A = { x e R :  r ~ < Ixl < 1}. More generally, for 2-almost all seS,  the following 
formulas hold 

j f (x )p(s ,  dx)= ~ r" S f ( r~x )p ( s ,  dx), 
R n =  - - o 0  A 

f ( x )  p(s, dx )=  ~ r -k+' ~ f(rk-~lx) p(x, dx), (3.15) 

f ( x )  p(s, dx )=  r - k - '  J f ( r  ~ x)p(s,  dx), 
i=0 A 

for every Borel non-negative function f and an arbitrary integer k. 

Proposi t ion 3.8. Let A be a centered S(c0, or more generally, a centered S(r, ~) 
r. measure. Then the (IC) condition holds, for any 0 < p < c~, and L %  (S; 2 ) =  L~ (S; 2) 
up to a renorming, for every 0 < p < ~. Consequently, there are positive constants 
C 1 and C2 depending only on p, r and ~ such that 

! 1_ 1 
c1 (J IfVd,W-<_(EI j fdAV)  p < C2(S If?d2)L (3.16) 

S S S 

for every feL~(S; 2). 

Proof. Since every centered S(e) r. var iable  is also a centered S(r, ~) r. var iable  
for every 0 < r <  1, it is enough  to p rove  the p ropos i t ion  for the case when  
A is a centered S(r, ~) r. measure .  

Firs t  we shall b o u n d  U(u, s). If  0 < c t <  1, then by (3.12), we have 

IU(u,s)l< j [~(ux)lp(s, dx)=lul  j [xlp(s, dx )+  j p(s, dx) (3.17) 
R {Ix[ < lul 1) {Ix[ > lul - 1} 

(for the sake of brevi ty  we shall omi t  in this p r o o f  the phrase  " fo r  )w-almost 

all s"). Let k be an integer such that r~< lul- 1 < r  ~ . U s i n g  ( 3 . 1 5 ) ,  we obtain 

j Ixlp(s, dx)<= 
{Ixl < lu1-1 ) 

J Ixl p(s, dx) 
k - 1  

(Ixl <~--} 
k - l + i  

= r -k+l - i  S r ~ Ixlp(s, dx) 
i=0 A 

< ~ r (1 -1 ) (k - l+ i}  
= p ( s , ~ )  

/=0 
1_1 

r 
< 1--1P(s'A)IuV-1; 

1 - - r  ~ 
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and, again by (3.15), we get 

p(s, dx)< [. p(s, dx) 
{Ixl > lul- q {Ixl >r~} 

i = 1  A 

By combining the above and (3.17), we obtain 

I U(u, s)l <=Op(s, A)lul ~, (3.18) 

1 1 1 

where D=r~-~(1--r ~- ) - 1 + ( i - - r )  -1. Let now 1 < ~ < 2 .  Then, by (3.10), we 
get 

Ie(u,s)[<= ~ Im(xu)-xulp(s, dx)<lul ~ [xlp(s, dx). (3.19) 
{Ixul > 1} {Ixl > lul ~} 

Let k be as above. Utilizing (3.15) again, we obtain 

Ixlp(s, dx)<= ~ Ixlp(s, dx) 
{Ixl > lul- i} {Ixl >r~} 

oo k - i  

= • r-k+i I r~-lxl p(s, dx) 
i = 1  d 

<= ~ r(a-})(i-k)p(s, A) 
i = 1  

1_--1 
~ ( 1 - r  ~)-lp(s,A)lul ~-~, 

which, together with (3.19), shows that (3.18) holds for all l < e < 2  with D =  

(1 - r 1 - } ) -  1. 
Using (3.15) repeatedly, in a very similar way as above, one can find positive 

constants D1 and D2, depending only on p, r and e, where 0 < p < e ,  0 < r < 1  
and 0 < c~ < 2, such that 

Dlp(s,A)rul~Vp(u,s) =uz ~ xZp(s, dx)+lu[ p ~ ]xlPp(s, dx) 
{Ix.l_< 1} {[xul > 1} 

<=Dzp(s,A)[u]'. (3.20) 

The condition (IC) follows now by (3.18) and (3.20) since, if c~ :~ 1, 

IU(u, s)lN Dp(s, A)IuI~<-< DD11 Vp(u, s). 

If c~=l, p(s, ") is symmetric and a(s)=0;  which implies U( ' ,  s)-=0 and (IC) 
holds in this case trivially. 
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Combining (3.18) and (3.20) we get, for every 0 <p  < e and 0 < e < 2 (including 
c~= 1), 

D1 p(s, A)lul~ <= ~p(u, s)= U* (u, s) + VAu, s) 
=<(D + D2) p(s, a)lu] ~, (3.21) 

where D=0 ,  if e = l .  We shall obtain now bounds for p(s, A) utilizing (2.5); 
which, in view of (3.10) and (3.12), reads 

IU(1, s)l+Vo(1, s)=l, if ~ : 1 ,  

and Vo(1, s) = 1, if e =  1. By (3.18) and (3.20), we get 

D~ p(s, A) N [ U(1, s)[ + Vo(1, s) = 1 _<__(D + D2) p(s, A); 

hence 
(D+ D2)-l <=p(s, A)<=D; ~ 

Consequently, by (3.21), 

Dl(D+ D2)- llul~<= ~p(u,s)~D~ l(D+ D2)[ul ~. 

This shows that feL~, if and only if Ilfl[~= ~ Ifl~d)~<oo and obviously the 
S 

F-norms [l" l[ ~, and ]l" II m~,(~,~ are comparable. Now, the inequalities (3.16) follow 
from Theorem 3.4 and the Closed Graph Theorem. [] 

VI. Spectal Representations of General Discrete 
and Centered Continuous Parameter ID Processes 

Let M be a S(e) L6vy measure on 12=Iz(N); then, as is well known [-13], M 
admits the representation: 

M =(p.  v)o T -  t, (4.1) 

where v is a finite measure on 8U, the boundary of the unit ball in 12, p is 
a S(~) L6vy measure on R and T is the map: ~ U x R  + -~/2\{0} defined by 
T(u, x)=xu. It is noted in [20, 21] that a representation similar to (4.1), can 
be obtained for any S(r, c 0 L6vy measure but one must replace 8U by the 

1 

annulus A--{x: r ' <  Ilxll < 1}. This fact that M admits the representation like 
(4.1) plays a crucial role in the proofs of spectral representations of stable and 
semistable processes obtained in [-2, 7, 8, 13, 20, 21, 27, 28]. The basic idea 
of all these proofs is as follows: Given a stable (resp. semistable) process X = {X,} 
with paths in 12, one first represents the L6vy measure M of 5r as in (4.1), 
then one defines a r. measure A on 8U (resp. on A) (or via a Borel isomorphism 
on some other Borel subset of a complete separable metric space) with control 
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measure FA(B)= v(A)p(B); and, finally by choosing suitable functions f , ,  one 
shows that 

{ ~ f,  dA} a {X,}. (4.2) 
S 

Further, using some continuity arguments, one obtains representation like (4.2) 
for continuous parameter stable and semistable processes. 

In order to apply a similar approach to obtain spectral representations of 
general ID processes, it is thus necessary to obtain a suitable representation, 
similar to (4.1), for the L6vy measure M o n  l 2 of the law of an arbitrary ID 
process Y= { Y,}. This representation is given in Theorem 4.2; using this represen- 
tation of M and using the other two parameters in the L6vy representation 
of 5e(Y), we define several ID r. measures A which meet the criterion (i) of 
the Introduction. Using such ID r. measures, we obtain spectral representations 
of all discrete parameters (Theorem 4.9) and "mos t"  centered continuous param- 
eter ID processes (Theorem 4.11); these include and extend, to a large degree, 
all known spectral representations to date of various special ID processes. For  
brevity and convenience of notations, we have obtained our representations 
on the unit sphere 0 U of 12; but, using a Borel isomorphism, one can obtain 
similar representations on any uncountable Borel subset of a complete separable 
metric space (see Remark 4.12 for more on this point). 

We begin by introducing some notations and conventions, which will be 
used in this section. Given a L6vy measure M on 12, the finite measure F 
on ~ ( ~ U  x R+), defined by 

r = M 0 o T, where M o (dz) = min(1, [[ z I[ z) M(dz), (4.3) 

can be represented (using a theorem on the existence of regular conditional 
probabilities or by Proposition 2.4) as 

F(C) = ~ ( ~ Ic(u, x) q(u, dx)) v(du), 
OU R + 

(4.4) 

where q: ~UxN(R+)~-->[-0, 1] satisfies conditions analogous to (d) and (e) of 
Proposition 2.4 and v is the finite measure given by 

v(A)=F(A x R+)=  ~ min {1, [Iz[I 2} M(dz), (4.5) 

for every Borel set A~ZJ(OU). Now we define the measures p(u, .) on ~(R+),  
F on ~ ( ~ U  x R +) and FA(. ) on ~ ( R  +) by 

for every u E 8 U 

p (u, dx) = [min {1, Ixl 2}] -1 q(u, dx), (4.6) 

F(C)= S ( ~ Ic(u, x) p(u, dx)) v(dx), (4.7) 
c~ U I !  + 
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for every CeM(~?U x R +) and FA(.)=F(A x .), for every A~N(QU). If M is sym- 
metric, then, by (4.3), F(A x B)=F(--A x B); hence, in particular, g(=-v) is sym- 
metric (see (4.5)). Using these, (4.4) and (4.6), we choose p such that 

p(u, d x ) = p ( - u ,  dx) (4.8) 

for all ueOU. In the symmetric case, in addition to the measures p(u, "), F, 
F., we also associate (to M) the measures p(u, .) on B(Ro), /7 on N(~U x Ro) 
and/7,  on N(Ro); here and in the following Ro will be used to denote R\{0}. 
These measures are defined by the following formulas: 

fi (u, d x) = 2-  t [-p (u, d x) + ( - 1). p (u, d x)], (4.9) 

for all u~OU, 
/7(C) = ~ ( ~ Ic(u, x) fi(u, dx)) g(du), (4.10) 

OU Ro 

for every CeN(3U x Ro), and 

/TA(') =/7(A X "), 

for every A ~ ( S U ) .  (As we noted in Sect. I, we will assume that p(u, .) are 
naturally extended to R o (or to R) and we will use the same notations for 
the extended measures. Similar remark applies to the measures fi(s, "), and also 
to the m e a s u r e s  FA(" ) and leA(')). 

Using the above definitions and Proposition 2.4, one gets the following facts 
about the measures defined above, these facts are recored here for clarity and 
ready reference. The proofs of these are straightforward; and use, among other 
facts, (4.5)-(4.10). 

Lemma 4.1. (i) The functions p and fi satisfy analogs of (d) and (e) of Proposi- 
tion 2.4. 

(ii) The measures p(u, .) and fi(u, .) are Ldvy measures on R; in fact, for 
all u~OU, 

min(1, Ixl 2) p(u, dx)= S rain(l, [xl 2) fi(u, dx)= 1; 
R + !1 

further, for every u~O U, the measure fi(u, dx) is symmetric and satisfies fi(u, dx) 
=p(-u, dx). 

(iii) The measures Fa(. ) and teA(-) are L~vy measures on R; in fact, 

min(1, x2)FA(dX)=v(A) and ~ min(1, x2)FA(dx)=g(A), 
R + No 

for every A ~ ~ (0 U); further, lea(')'s and F are symmetric. 
(iv) For every CeN(aU x Ro) 

le(C) = 2 -1 [F(Cc~(~U x R+))+F(--Cn(OU x -R+))]. 

Now we are ready to state our result providing the useful representation, 
similar to (4.1), of an arbitrary L6vy measure on 12. The proof of this follows 
using the above lemma, (4.4), (4.6), (4.7), (4.10), the standard limiting arguments 
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(e.g. [-1] p. 104) and the change of variable formula. We omit the proof for 
brevity. 

Proposition 4.2. (a) Let M be a Ldvy measure on 12; then F is a unique measure 
on N(0U x R +) satisfying 

M = F o ~ - I ;  (4.11) 

(hence, from (4.7) and (4.11)) we have the desired representation of M: for every 
DeN(12\{0}), 

M(D)= ~ ( f  ID(XU)p(u, dx))v(du); (4.12) 
OU R + 

more generally, 

fdM= ~ ( S f(xu)p(u, dx))v(du), (4.13) 
12\{0} ~U R + 

whenever either f >  0 or ~ if] dM is finite, in the second case f can be complex. 
t2\{o} 

(b) I f  M is symmetric, then F is the unique symmetric measure on ~ ( S U  • Ro) 
satisfying 

M = F o T  -1, 

where ~ is the natural extension of ~ to ~ U •  and, in addition to (4.12), 
M also admits the representation: 

M(D) = ~ ( ~ ID(XU ) ~(U, dx)) ~(du), (4.14) 
0 U  R + 

for every De~(12\{0}); and the analog of (4.13) also holds. 

We point out here that our polar decompositions of M obtained in the 
above theorem enjoys similar properties as the decomposition of the stable 
L6vy measure due to Lbvy and Kuelbs as noted in Sect. 1; namely, the measure 
p(u, .), ~(u, "), FA(" ), FA(" ) inherit properties of M. We address this point in 
Proposition 4.4 for three important classes of L6vy measures. This property 
of our polar decomposition, as noted in the introductory remarks of this section, 
is very important for us while defining the right ID r. measures for our spectral 
representations for ID processes. To facilitate the presentation of Proposition 4.4, 
we first introduce a few more notations and then state a 1emma which in needed 
for the proof of the proposition. 

Let H denote a finite or infinite dimensional real separable Hilbert space. 
Then, we denote, by J{I(H), the set of all S(r, ~) L6vy measures on H, by 
Jg2(H), the set of all S(e) L6vy measures on H and, by J/a(H), the set of all 
SD L6vy measures on H. We recall that, for a given L6vy measure M on H, 
the following are well known: 

M ~ d l  1 (H)c~rM = r ~. M, (4.15) 

M E d g z ( H ) ~ t M  = U. M, for all ts(0, 1], (4.16) 

m e J g 3 ( H ) ~ t . m < m ,  for all te(0, 1]. (4.17) 
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We also recall that if # is an ID measure on H with L6vy measure M; 
the L6vy measures of #s, the s-th roots of g, and s.#, s>0 ,  are, respectively, 
sM and s.M. Using these facts, the continuity of the semigroup {#s: s>0} 
and standard arguments about weak convergence, one gets easily a proof of 
the following lemma: 

Lemma 4.3. Let M be a Lbvy measure on H and T any countable dense subset 
1_ 

of (0, 1], then M~Jg2(H) (resp. M ~ J g a ( H ) ) ~ t M = U - M  (resp. t .M  <=M), for 
every t ~ T. 

Proposition 4.4. Let M be a Lbvy measure on 12; and p(u, "), FA(') and v be 
the measures related to M as defined prior to Proposition 4.1. Then, for any 
fixed i= 1, 2, 3, me~di(H)*~.off a v-null set, p(u, ")edgi(R).~Fa(')ed/di(R), for 
all A~JJ(8U). 

Proof We outline the proof only in the case i=  1; the other two cases can 
be proxed with similar methods using Lemma 4.3 and (4.16)-(4.19). Let A, B 
and D denote the generic elements of ~(0  U), ~ (R +) and ~ (12\{0}), respectively. 
Observe, form (4.12), that for any a > 0  

a.M(D)= ~ ( ~ ID(xu)a.p(u, dx))v(du); 
~U R + 

(4.18) 

and, if D =  ~(A x B), we get, from (4.18), that 

a.M(D)=a.FA(B ) and aM(D)=aFa(B). (4.19) 

1- 
N O W  let MeJ/dx(H ). Then, by (4.15), rM=r~.M. Therefore, by (4.19), rFA(') 

1 

=r~.FA('), for all A; showing F A ( . ) ~ I ( R ) .  Now let Fa(.)Ed/dl(R), for all A; 

then, from (4.19) again, rp(B)=r~.p(u, B) a.e. [v], for every fixed B. But, as 

~(R) is countably generated, rp(u, dx)=r~.p(u, dx), of a v-null set. Showing 
p(u, ")eddl(R), off a v-null set. Finally, if p(u, "eJ~l(R), off a v-null set, we 

1 

have, from (4.18), that r M = R  ~.M or that MeJdl(12). [] 

Remark 4.5. If M is symmetric, then exactly the same proofs as above show: 
For every fixed i=1 ,2 ,  3, M~i(H)~=~fi(u,-)ed/i(R), off a g-null set<=~FA(-) 
~ / (11) ,  for all A. (Here one uses (4.14) instead of (4.12).) 

Now we prepare to state and prove our first main result of this section; 
namely, the spectral representations of general discrete ID processes. To obtain 
these representations, the first important step is to construct a right ID r. measure 
for a given ID process. Let X = { X , ;  n - l ,  2 . . . .  } be an ID process; let b,>O 
be such that Y={b,X,,}~lz almost surely. Let # = ~ a ( y )  be the ID law of Y 
on 12 with L6vy representation: # ~  [Zo, •, M] where zoEl2, fit r is the covariance 
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operator and M is the L6vy measure o f / t  (recall that we always choose our 
centering function to be "c given in (1.5)). Now, for every y~I2, 

~P(y) = ~ flj (e j, y )  ej, 
J 

where flj>O, ~ flj< oo and {ej} is an orthonormal set in I z. 
J 

Define two finite measures on ~(0U) by 

v0=llzoll ~r zo l '  if z0:#0, =0,  if Zo=0; and vl=~flj6{ej};  (4.20) 
I.IlzollJ J 

and recall the measures v and F. (associated to M and defined prior to Lem- 
ma 4.1). Now we make the following definition. 

Definition 4.6. Let X, v0, v~ and F. be as above, then the ID r. measure on 
N(~U) with parameters (Vo, vl, F.) will be refered to as the associated ID r. 
measure of X (see Proposition2.1; and note that from Lemma4(iii) v(A) 
= ~ rain(l, x z) dFA(Z); hence, the control measure 2 of A is equal to Vo + vl + v). 

R +  

Using this r. measure A, we shall obtain the spectral representation of X 
which meets both criteria (i) and (ii) of the Introduction. Before we can state 
and prove our representation theorem, however, we will need two lemmas. In 
the first lemma, we record three integral identities; the proofs of the first two 
are straightforward and the proof of the last is a direct consequence of (4.13). 
In the following lemmas and the theorem, we will use above notations and 
conventions; in addition, we will denote, by re,, the nth co-ordinate projection 
in l 2 . 

Lemma 4.7. Let al, a2, . . . ,  a n be n-real numbers, then 

aj 7zj(z) vo(dz ) = aj rcj(zo), (4.21) 
OU ,i=1 

aj~j(z) vl(dz)= flk ajrcj(ek) =(JY-y ,y) ,  (4.22) 
OU j j 

where y=(a 1, ..., a,, O, O, ...) and 

( ~ min{1, n2,(u)x2}p(u, dx))v(du)= ~ min{1, n2,(z)}M(dz). (4.23) 
OU R + 12 

Lemma 4.8. Let Z =- {Z,} be an ID process with almost all sample paths in 12. 
Then 7=-Y(Z)  is an S(cQ (resp. S(r, ~); SD) prob. measure, if Z is an S(e) (resp. 
S(r, ~); SD) process. Further, if Z is centered S(e) (resp. S(r, e)) process then 
y is a centered S(e) (resp. S(r, ~)) prob. measure. 

Proof. A proof of the last part in the centered S(r, ~) case is provided in [20]. 
Similar proof works in the other cases. We outline the proof in the SD case. 
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Denote by re1 ...... the natural projection from 12 onto R"; and let 0 < a <  1 be 
fixed. First observe 7orti-,1 .... = s  1, . . . ,Z , )  and (a.~)orci-! .... =a ' (7ore?,! . . , . )  
=a.Zr . . . . .  Z,). Hence as Z is a SD process, there exists a unique prob. 
measure 7, on R" (recall (1.3)) satisfying 

7~ 1. .... =(a'?)~ 1 .... *7,- (4.24) 

Now, using Kolmogorov's  extension theorem, we construct a unique prob. mea- 
sure Yo on R ~ with ?oOre~- a. .... =7, .  Using (4.24) and viewing the measures ? 
and a.7 on R ~176 and using ch. functions, we find 

7 = a . 7 . 7 0  

on R ~~ But, then 1=7o(12)= I 7o(12-l-X) a'7(dx);  hence 3)o(12) = 1. []  
12 

Theorem 4.9. Let X = { X , }  be an ID process and let A be its associated ID 
r. measure with parameters (Vo, vl,  F.) and control measure 2 (see Definition 4.6). 
Let  f ,  = b~ 1 re, ; then f , ' s  are A-integrable (equivalently, f , ' s  belong to L~,o(t3 U; 2)) 
and 

{X,} __a { 5 f ,  dA}. (4.25) 
8U 

Further, if  X is an S(cz) (resp. S(r, c0; SD) process, then A is an S(7) (resp. S(r, :r 
SD) r. measure. 

Proof  First we show that rt,'s are A-integrable (which will trivially imply the 
A-integrability of f,'s). To prove this, we must verify (i)-(iii) of Theorem (2.3). 
But, in view of (4.22) and (4.23), and the fact that 

min { 1, re, (z) 2 } M (d z) < ~ rain { 1, I I z II 2 } m (d z) < 0% 
12 12 

we need only to verify (i). Thus, in view of (4.21), we need to verify that 

S ( ~ E~(re.(u) X)--ren(U) ~(X)] p(U, dx)) v(du) 
OU R + 

is finite. But this follows since the absolute value of the integrand is no more 
that (1 + ]re,(u)[) max( l ,  feZ(u)} and since Ire,(u)l < 1 and v is finite. 

Now, recalling that X , =  b21 y,, in order to prove (4.25), it is sufficient (in 

fact, is equivalent)to prove that (Y,} ~{  ~ re, dA}. To prove this we must show 
OU 

0~ aj (1) = ~g' aj S red dA (1), 
j ] eV 

(4.26) 
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for every fixed k, and a~ . . . .  , a k real. Now the left side of (4.26) 

=eexp iY aj =Iexp i 2  aj j(z) 
\ j = l  12 j = l  12 

= exp {i(zo, y)  - - �89  y)  + ~ (e i ( z ' y ) -  1 --i(z(z), y)) dM}, 
12 

where y=(al ,  ..., ak, O, O, ...); and the right side of (4.26), by (2.5), 

=e xp  i I ajnj(u %(du)- �89  I ajnj(u) Vl(dU ) 
k OU j OU j 

+ ~ ! ~e , j=, / - 1 - i  ~= a~nj(u)z(x) p(u, dx )v (du)  . 
ou  H j 

Thus, recalling (4.21) and (4.22), we need only to verify that 

S ( ei(~'r> - 1 - i (z  (z), y)) dM 
12 

k 

=o! [J+ (eiX(J~=laJ~J(ul)-l-iQ~=,aJnj(u))z(x))p(u'dx)] v(du)" 

But, from (4.13), the left side of this equation 

= S [ ~ ( el<x"''> _ 1 - i {r (x u), y))  p (u, d x)] v (d u) 
OU R + 

[ ix y, - -1-- i  ajnj(u) z(x) p(u, dx) v(du), = ~ ~e j=l ajnj(u) 

OU 

since -c (x u) = x u, if 0 < H x u [I = x < 1, = u, if x > 1, which completes the proof  

of {y,} a__{ I n, dA}. The last part of the theorem follows immediately from 
ov 

Lemma 4.8 and Proposition 4.4. []  

The above theorem yields all known spectral representations for discrete 
parameter stable and semistable processes [2, 7, 13, 20, 27, 28] without having 
to center or to symmetrize the process; this, in addition, clearly also yields 
similar spectral representations for SD processes. Unlike the discrete case, our 
methods, unfortunately, do not allow us to obtain spectral representations for 
arbitrary continuous parameter ID processes. However, if the process satisfies 
some additional conditions then, using Theorem 3.4, we can indeed obtain spec- 
tral representations for such a process. These, besides providing spectral repre- 
sentations for new classes of ID processes, also yield, in a unified way, all pre- 
viously known spectral representations for stable and semistable processes. We 
address these points in the remaining of this section. We begin with some pre- 
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liminaries which are needed to define associated ID r. measures for continuous 
parameter ID processes. 

Let q > 0  be fixed, and let T be an arbitrary index set. Let X={Xt" t~T} 
be an ID process which satisfies the condition 

(mc)q E[Xtlq<~, forall  t~T, 

and which is Lq( =-Lq(Q; P))-separable (i.e., there exists a countable subset To 
= {t,} of Tsuch that, for every te  T, there is a sequence {sin} N To with Xsm---,Xt 
in Lq). Recall that if T is a separable metric space and X is Lq-continuous 
than X is separable in Lq. (Note that if q = 0 ,  then (mC)q is vacously satisfied; 
hence, in this case, it imposes no restriction on X.) If q =0,  choose b, >0,  as 
prior to Definition 4.1, such that Y~I z a.s., where, as before, Y , = b , X ,  and X,  
= Xt,, t, e To, for every n. If q > 0, then we choose b, > 0 satisfying, additionally, 

E 112 < oo. Such a choice of b,'s is always possible; this can be shown, 
1 

for instance, using the following inequalities: 

Ib,,X,,I {Ib.X.[2}~=~',b~lX.[ q, 
n 1 

if 0<q__<2, and if q>2 ,  then 

oo q 0o n 9~ ,  -2)2=(n 12n,bn22xn2)2 
< ~ 2-"bq. 2q~lX.I q= ~ 2(~-Q"bq.lx.lq. 

n = l  n = l  

As before, let # = # q = ~ ( Y )  be the ID measure on 12; denote its convariance 
operator  and L6vy measure by 2(( = Sfq and M = Mq, respectively. If q > 0, then 
our choice of b.'s guarantees 

ILzlLqd#< oo; hence ~ IlzllqdM < oo. 
12 (llzll >1} 

Thus, we have 

oo > S Ilzl[ qdM 
([IzII > 1} 

= ~ ~ [x[qI([x[>l)p(u, dx)v(du) > ~ [xlqI(]xl>l)FA(dx), 
OU R + R + 

(4.27) 

for every A~C~(OU). If X symmetric, then # (and hence M) is symmetric; in 
this case the measures F. (see Proposition 4.2) are symmetric. Using these pre- 
liminaries and notations, we shall now define suitable associated ID r. measures 
for the following three classes of ID processes; then we shall state and prove 
our spectral representations for these classes of processes. 
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Let q > 0  and let X = { X t :  t~T}  be an Lq-separable ID process satisfying 
(mc)q; we consider the processes which satisfy any one of the following assump- 
tions: (A1)X symmetric and q > 0  arbitrary; (AE)X arbitrary (as above) q>  1 
and E(Xt)=O, for all t; and (A3)X is centered S(a) or centered S(r, a) 0 < ~ < 2  
(so that, in this case, 0 < q < ~). 

Definition 4.10. If X satisfies (AI) (resp. (A2)) then the r. measure A with parame- 
ters (0, vl, F.) (resp. (Vo, vl, F.)) will be called the associated ID r. measure 
of the process X satisfying (Am) (resp. (A2)), where v 1 is the measure defined 
in (4.20) for the covariance ~ ,  and Vo is as in (3.9) (note that (4.27) is needed 
here). If X satisfies (Aa) and X is strictly S(a) process with 1 < ~ < 2 and 1 < q < c~, 
then the r. measure with parameters (Vo, 0, F.) will be called the associated 
ID r. measure of X; finally, if X is strictly S (c 0 process with 0 < a < 1 and 0 < q < c~, 
then the ID r. measure with parameters (v;, 0, F.) will be called the associated 
ID r. measure of X, where v~ is given by (3.11). Note that in the last two 
definitions, in order to define v o (resp. v;) one must have that ~ Ixl dF A < oo 

{Ix[>_l} 
(resp. ~ Ix ldFA<~),  for all AEgU.  That this condition is indeed satisfied 

{1~1 _-< 1} 
follows from the fact that F. is a S(a) L6vy measure with index 1 < e < 2 (resp. 
0 < e < l ) ;  (see Proposition 4.2 and Lemma 4.8). The associated ID r. measure 
when X is a strictly S(r, ~) process is defined in an analogous way. Finally, 
note that, by (4.27), the associated r. measure 2 satisfies (MC)q, provided the 
process X satisfies (mc)q. 

Theorem 4.11. Let q > 0 and X = { X t : t e T} be an Lq-separable ID process satisfy- 
ing any one of (A0-(A3) assumptions and let A be the corresponding associated 
ID r. measure with control measure A. Then, there exist f t~Le,(O U, 2), te T, such 
that 

Xd={ ~ f td2:  tET};  (4.28) 
OU 

and that the map 
k k 

Lq(Y2;P)~ ~ ajXtj~--~ ~, a J t F L ~ ( ~ U  , 2) (4.29) 
j = l  j = l  

extends to a linear topological isomorphism from the Lq-closure of the span of 
{X,: t~T}  onto the closure of the span of {ft: t~T}  in the space La, o(QU, 2). 
Further, under the assumption (A1) or (A2) , if X is a S(~) (resp. S(r, a); SD) process, 
then A is a S(a) (resp. S(r, a); SD) r. measure. Finally, under the asumption (A3), 
if X is a strictly S(7) (resp. S(r,~)) 0 < ~ < 2 ,  a ~ l ,  then A is a strictly S(7) 
(resp. S(r, a)) r. measure. 

Proof The proofs of (4.28) under any one of three assumptions are similar 
and use Propositions 3.6 and 3.8, the methods of proof the Theorem 4.9, and 
the Lq-separability of X. To exhibit the ideas of the proof, we outline the proof 
only under the assumption (A2). (See Definition 4.10, and notations introduced 
prior to it.) Also recall the definition of nn from Lemma 4.9. 
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The fact that n,'s are A-integrable is exactly the same as in Theorem 4.9. 
We shall now show that 

{Y.}~{ frc. dA}. (4.30) 
8 U  

Let a~ .. . .  , a k be k-fixed real numbers; then recalling that c~o(y)=# and 

e'<~"> dp=exp{-�89 + I { ei<~''>- 1 - i ( z ,  y)} dM}, 
12 12 

for every yel 2 ; and using (4.22) and (4.13), we have 

j = l  

=exp  - ~  I g2(u) Vl(dU) + I eijZ=~a'~J(Z)--l--i Z aj~j(z) dM 
OU 12 j = 1 

= exp [ -  �89 ~ g2 (u) v~ (d u) + ~ { ~ (e ~xg(")- 1 - ix g(u)) p (u, d x)} v (d u)], 
8U 8U R + 

k 

where g = ~ a 27~]. On the other hand, by (2.5), 
j = l  

~ (  ~ g(s)dA)(1)=exp[ ~ g(u)vo(du)-�89 ~ g2(u)vt(du) 
~U 8U 8U 

+ ~ { I ( e'xg(")- 1--ig(u) z(x))p(u, dx)} v(du)]. 
8U R + 

(4.31) 

The first and last integral on the right side of (4.31) can be combined to see 

that 2 (  ~ g(u)dA)(1) is equal to 5r Yj(.) (1); proving (4.30). Now recall- 
o c  ~ a j  

ing that Y, = b~-1 Xt,, we see, from (4.30), that 

{Xt,: t ,~To}~{ ~ f dA: t,6To}, 
0 U  

where f = b 2 1  7c,. Now by (4.27) and by the definition of A, E(A(A))=O and 
E[A(A)Iq< 0% for every AeN(OU);  hence we have, by Proposition 3.6, that the 
map 

L%(OU, 2)~/~--~ ~ fdAeLq((2, P) 
OU 

is an isomorphism. Let t~T; choose a sequence {sin}-To such that X~,, ~ X t  
in Lq. It follows that { ~ fs,, dA} converges in Lq; hence, from Proposition 3.7, 

OU 
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we have that there exists an ft in Loq(0U, 2) and that ~ f ~ d A ~  ~ f tdA  in 
Lq. Now, in order to prove (4.28), we must show ov ~v 

~-q'(X,,,. ...... X,k)=5r ( ~ f h d A  . . . . .  ~ fzkdA) 
~U ~U 

for any fixed 11, ..., lke T. But this follows from the usual limiting arguments. 
The proof of the last two assertions of the theorem follows easily using 

the construction of A and Proposition 4.4, Remark 4.5 and Lemma 4.8. Finally, 
the proof of the fact that the map (4.29) extends to a linear topological isomor- 
phism, under any one of the three assumptions, is immediate using Theorem 3.4 
and Propositions 3.5 and 3.6 (note that under (A2), we have already noted that 
A satisfies (IC)a; under (A1), obviously A is symmetric, and, under (A3), A is 
either strictly S(~) or S(r, ~) r. measure and 0 < c~ < 2, ~ 4:1). [] 

Remark 4.12. (a) As noted in the introductory remarks, the above theorem 
obviously yields the known spectral representations for stable and semistable 
representations [-2, 7, 13, 20, 27, 28]. For emphasis, we also note again that 
our r. measure A and the functions f:s,  in the above theorem, meet the criteria 
(i) and (ii) of the Introduction, respectively. 

(b) As noted in the introductory remarks of this section, we have obtained 
the spectral representations in Theorems 4.9 and 4.11 on the space ~ U for sim- 
plicity and convenience of notations. However, the space a U can be replaced 
by any other uncountable Borel subset S of a complete separable metric space; 
we outline this for Theorem 4.9, a similar procedure applies in the case of Theo- 
rem 4.11. Let ~b be a Borel isomorphism from 8 U onto S; and recall the hypothe- 
ses and notations used in Theorem 4.9. Set g0 =VoOq9 -1, ,71 =v l  o~b -1, ~=vo~b -1 
and PA(B)= ~ ~ ~(s, dx) g(ds), where ~(s, dx)= p((~- l (s), dx). Let .4 be the ID 

A B 

r. measure on (S, N(S)) with parameters (v0, Vl, F.) and let gn=(bs -1 zc,)oqS-1; 

then it follows using Theorem 4.9, that {X,} _a { ~ g, dA}. In particular, one may 
s 

take S = [0, 1] and replace .4 by a process with independent increments. 

V. Refinement of Spectral Representations in Distribution 
to Spectral Representations which Hold Almost Surely 

In this section, we shall show that the spectral representations of stochastic 
processes obtained in the previous section can be modified so that the new 
representations hold almost surely. This, however, requires that the processes 
be redefined on a slightly larger prob. space. The possibility of such a refinement, 
by making use of the randomization lemma (Lemma 1.1 [-12]), was suggested 
to us by O. Kallenberg. It is a great pleasure for both of us to thank Prof. 
Kallenberg for this suggestion. For  our purposes, we shall need a slight general- 
ization of the randomization lemma, which can be proven essentially by the 
same argument as Lemma 1.1 [-12]. We omit this proof. 
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Lemma 5.1. Let ~ and q' be random elements defined on the prob. spaces (f2, P) 
and (f2', P'), and taking values in the spaces S and T, respectively, where S is 

a separable metric space and T is Polish space. Assume that ~-d-f(t/ ')for some 

Borel measurable function f: T-* S. Then there exists a random element t I d tf 
on the ("randomized') prob. space (f2 x [0, 1], P • Leb) such that f l=f (~)  a.s. 
P • Leb. 

Theorem 5.2. Let {Xd te T} be an ID stochastic process defined on a prob. space 
(f2, P). Assume 

{Xt: t e T } ~ { ~ f d A ' :  t eT} ,  
S 

where A' is an ID r. measure defined on a prob. space (Q', P') and S is a Borel 
subset of a Polish space. Then there exists an ID r. measure A defined on the 
prob space (t? x [0, 1], P x Leb) such that 

{A(A): Aeso}  d={A'(A): Aeso} 

(here 5O is the Borel a-algebra of S) and 

for every t e T 

Xt  = ~ ft dA a.s. P x Leb, 
S 

Proof We have that fteLeo(S; 2) for every teT, where 2 is the control measure 
of A'. Since 5 ~ is countably generated, L~o is separable. Hence there exists a 

t Qo oe set To = { ,},= l c Tsuch that {f,,},= 1 is dense in {f~},~r c Leo-Define ~: O--, R ~ 

by 

~(a)=(x,(~),x,2(m),...). 

Choose 5% = {Aj}~= 1 to be a countable algebra of sets such 5% c 5" and a(5oo) 
= 5  ~. Define r/': t2~--,R ~176 by 

q' (co') = (A' (A 1)(co'), A' (A2) (~o'),...). 

Since, for every feL~,o, there exists a sequence {gk} of simple 5oo-measurable 
functions such that gk--+f in Leo, we get, by Theorem 3.3, that S gk dA'---, ~ fdA '  

S S 

in prob. as k ~ o c .  In particular, ~fdA'  is equal a.s. [P'] to some a{A'(Aj): 
S 

j >  1}=a(r/')-measurable r. variable. Consequently, for every n, there exists a 
Borel function (p, : R * ~ R such that 

S ft dA '=  cp,(r/') a.s. [P']. (5.1) 
S 
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Then, by the assumption of our theorem, {Xr.: n > l }  a--{q~,01'): n > l }  or 

{ ~ ( q ' ) ,  where ~: R~~ ~176 is the Borel function defined by ~(x)=(~01(x ), 
(p2(x) . . . .  ), x e R  ~ In view of Lemma 5.1, there exists an R~176 r. element 

t/ defined on ( O x [ 0 ,  1], PxLeb.)  such that t /~t/ '  and {=~( t / )  a.s. PxLeb.  
Put A(Aj)=t/j ,  AjeSeo . Since t/' is the restriction of the r. measure A' to the 

algebra 5% and ~/~ t/', there exists a unique (modulo P x Leb.) extension of A 
to a r. measure on a(Seo)= 5 e such that 

By (5.1), we get 

which yields 

{A(A): A~sp) d={A'(A): A~SP}. (5.2) 

~o,(tl)= ~ f dA a.s. P x Leb; 
s 

Xt, = ~ f .  dA a.s. P x Leb, (5.3) 
s 

for every n > 1. 
t oo Let now t e T  be arbitrary. We can choose a sequence { ,(k)}k=l C To such 

that f ,~ )  --+f, in L~o. By (5.2) and the assumption of our theorem, 

(x,~ x,) L (j f,.,k, dA, j f, dA). 
s s 

Since ~ f*,<k, dA ~ ~f, dA in P x Leb. as k ~ ~ ,  we get that X~,,k, ~ X  t in P x Leb 
s s 

as k ~ ~ .  By (5.3), X,= ~ f dA a.s. P x Leb. [] 
s 

Remark 5.3. In the above proof, the fact that the r. measure A is ID or even 
independently scattered is not  important.  In fact, similar methods can be used 
to prove a version of Theorem 5.2, where A is an arbitrary random measure 
and ~fdA is defined as a limit, in some appropriate sense, of stochastic integrals 
of 5%-measurable simple functions. 

Note. The results of this paper were communicated to ICM-86 Steering Commit tee  on May 2, 
1986, under  the title "Stochastic integrals relative to i.d. random measures with applications to 
the integral representations of i.d. processes," and were presented to the ICM at Berkeley on August  5, 
1986. 
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