Skip to main content
Log in

Reaching for the ring: the study of mitochondrial genome structure

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The linear molecules that comprise most of the mitochondrial DNA (mtDNA) isolated from most organisms result from the artifactual degradation of circular genomes that exist within mitochondria. This view has been adopted by most investigators and is based on DNA fragment mapping data as well as analogy to the genomesized circular mtDNA molecules obtained in high yield from animals. The alternative view that linear molecules actually represent the major form of DNA within mitochondria is supported by two observations: (1) over a 1000-fold range of genome size among fungi and plants we find the same size distribution of linear mtDNA molecules, and (2) linear mtDNA molecules much larger than genome size can be found for some fungi and plants. The circles that represent only a small fraction of the mtDNA obtained from most eukaryotes could be optional sequence forms unimportant for mitochondrial function; they may also participate in mtDNA replication. The circles might result from incidental recombination events between directly repeated sequences within or between tandemly arrayed genome units on linear mtDNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agsteribbe E, Kroon AM, Van Bruggen EFJ (1972) Biochim Biophys Acta 269:299–303

    Google Scholar 

  • Almasan A, Mishra NC (1991) Proc Natl Acad Sci USA 88:7684–7688

    Google Scholar 

  • André C, Levy A, Walbot V (1992) Trends Genet 8:128–132

    Google Scholar 

  • Anziano PQ, Perlman PS, Lang BF, Wolf K (1983) Curr Genet 7:273–284

    Google Scholar 

  • Bendich AJ (1982) Plant mitochondrial DNA: The last frontier. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 477–481

    Google Scholar 

  • Bendich AJ (1982) Plant mitochondrial DNA: unusual variation on a common theme. In: Hohn B, Dennis ES (eds) Genetic flux in plants. Springer-Verlag, Wien, pp 111–138

    Google Scholar 

  • Bendich AJ (1987) BioEssays 6:279–282

    Google Scholar 

  • Bendich AJ (1991) Protoplasma 160:121–130

    Google Scholar 

  • Bendich AJ, Smith SB (1990) Curr Genet 17:421–425

    Google Scholar 

  • Bendich AJ, Loretz C, Monnat RJ Jr (1993) The structure of the plant mitochondrial genome. In: Brennicke A, Kück U (eds) Plant mitochondria. VCH Verlagsgesellschaft, Weinheim (in press)

    Google Scholar 

  • Bernard U, Pühler A, Küntzel H (1975) FEBS Lett 60:119–121

    Google Scholar 

  • Birkenmeyer L, Ray DS (1986) J Biol Chem 261:2362–2368

    Google Scholar 

  • Birkenmeyer L, Sugisaki H, Ray DS (1987) J Biol Chem 262:2384–2392

    Google Scholar 

  • Birky CW Jr (1983) Science 222:468–475

    Google Scholar 

  • Boer PH, Bonen L, Lee RW, Gray MW (1985) Proc Natl Acad Sci USA 82:3340–3344

    Google Scholar 

  • Bohnert HJ (1977) Exp Cell Res 106:426–430

    Google Scholar 

  • Bohnert HJ, Herrmann RG (1974) Eur J Biochem 50:83–90

    Google Scholar 

  • Borst P (1972) Annu Rev Biochem 41:333–376

    Google Scholar 

  • Borst P, Kroon AM (1969) Int Rev Cytol 26:106–190

    Google Scholar 

  • Boynton JE, Harris EH, Burkhart BD, Lamerson PM, Gillham NW (1987) Proc Natl Acad Sci USA 84:2391–2395

    Google Scholar 

  • Bridge D, Cunningham CW, Schierwater B, DeSalle R, Buss LW (1992) Proc Natl Acad Sci USA 82:8750–8753

    Google Scholar 

  • Carle GF, Olson MV (1985) Proc Natl Acad Sci USA 82:3756–3760

    Google Scholar 

  • Carpenter MS, DeLange AM (1991) J Virol 65:4042–4050

    Google Scholar 

  • Christiansen G, Christiansen C (1976) Nucleic Acids Res 3:465–476

    Google Scholar 

  • Clayton DA, Brambl RM (1972) Biochem Biophys Res Commun 46:1477–1482

    Google Scholar 

  • Coleman AW, Goff LJ (1991) J Physiol 27:463–473

    Google Scholar 

  • Cummings DJ, Belcour L, Grandchamp C (1979) Mol Gen Genet 171:229–238

    Google Scholar 

  • Cummings DJ, McNally KL, Domenico JM, Matsuura ET (1990) Curr Genet 17:375–402

    Google Scholar 

  • Dale RMK, Duessing JH, Keene D (1981) Nucleic Acids Res 9:4583–4593

    Google Scholar 

  • Dale RMK, Wu M, Kiernan MCC (1983) Nucleic Acids Res 11:1673–1685

    Google Scholar 

  • DeLange AM (1989) J Virol 63:2437–2444

    Google Scholar 

  • DeLange AM, McFadden G (1990) Curr Top Microbiol Immunol 163:71–92

    Google Scholar 

  • Del Giudice L, Wolf K, Sassone-Corsi P, Alvino C (1978) Mol Gen Genet 164:289–293

    Google Scholar 

  • Denovan-Wright EM, Lee RW (1992) Curr Genet 21:197–202

    Google Scholar 

  • deZamaroczy M, Bernardi G (1986) Gene 47:155–177

    Google Scholar 

  • Dudareva NA, Kiseleva EV, Boyarintseva AE, Maystrenko AG, Khristolyubova NB, Salganik RI (1988) Theor Appl Genet 76:753–759

    Google Scholar 

  • Fangman WL, Henly JW, Churchill G, Brewer BJ (1989) Mol Cell Biol 9:1917–1921

    Google Scholar 

  • Feagin JE (1992) Mol Biochem Parasitol 52:145–148

    Google Scholar 

  • Fukuhara H, Sor F, Drissi R, Dinouël N, Miyakawa I, Rousset S, Viola A-M (1993) Mol Cell Biol 13:2309–2314

    Google Scholar 

  • Grant D, Chiang KS (1980) Plasmid 4:82–96

    Google Scholar 

  • Grayburn WS, Bendich AJ (1987) Curr Genet 12:1257–261

    Google Scholar 

  • Guérineau M, Grandchamp C, Slonimski PP (1975) Biochimie 57:917–929

    Google Scholar 

  • Hajduk SL, Siqueira AM, Vickerman K (1986) Mol Cell Biol 6:4372–4378

    Google Scholar 

  • Hall R, Coggins L, McKellar S, Shiels B, Tait A (1990) Mol Biochem Parasitol 38:253–260

    Google Scholar 

  • Hashimoto C, Fujisawa H (1992) Virology 187:788–795

    Google Scholar 

  • Hass JM de, Hille J, Kors F, van der Meer B, Kool AJ, Folkerts O, Nijkamp HJJ (1991) Curr Genet 20:503–513

    Google Scholar 

  • Hollenberg CP, Borst P, Van Bruggen EFJ (1970) Biochim Biophys Acta 209:1–15

    Google Scholar 

  • Joseph JT, Aldritt SM, Unnasch T, Puijalon O, Wirth DF (1989) Mol Cell Biol 9:3621–3629

    Google Scholar 

  • Kováĉ L, Lazowska J, Slonimski PP (1984) Mol Gen Genet 197:420–424

    Google Scholar 

  • Kuroiwa T, Fujie M, Kuroiwa H (1992) J Cell Sci 101:483–493

    Google Scholar 

  • Lee RW, Dumas C, Lemieux C, Turmel M (1991) Mol Gen Genet 231:53–58

    Google Scholar 

  • León P, Macaya G (1983) Chromosoma 88:307–314

    Google Scholar 

  • Levings CS III, Shah DM, Hu WWL, Pring DR, Timothy DH (1979) Molecular heterogeneity among mitochondrial DNAs from different maize cytoplasms. In: Cummings DJ, Borst P, David IB, Weissman SM, Fox C (eds) Extrachromosomal DNA. ICN-UCLA Symposia on Molecular and Cellular Biology, vol 15. Academic Press, New York, pp 63–73

    Google Scholar 

  • Levy AA, André CP, Walbot V (1991) Genetics 128:417–424

    Google Scholar 

  • Li N, Cattolico RA (1987) Mol Gen Genet 209:343–351

    Google Scholar 

  • Maleszka R (1992) Biochem Biophys Res Commun 186:1669–1673

    Google Scholar 

  • Maleszka R, Clark-Walker GD (1992) Curr Genet 22:341–344

    Google Scholar 

  • Maleszka R, Skelly PJ, Clark-Walker GD (1991) EMBO J 10:3923–3929

    Google Scholar 

  • Manna F, Del Giudice L, Massardo DR, Schreil WH, Cermola M, Devreux M, Wolf K (1985) Curr Genet 9:411–415

    Google Scholar 

  • Martin FN (1991) Genome 34:156–162

    Google Scholar 

  • Martín-Parras L, Hernández P, Martínez-Robles ML, Schvartzman JB (1992) J Biol Chem 207:22496–22505

    Google Scholar 

  • Megson A, Inman GJ, Hunt PD, Baylis HA, Hall R (1991) Mol Biochem Parasitol 48:113–116

    Google Scholar 

  • Merchlinsky M, Moss B (1989) J Virol 63:1595–1603

    Google Scholar 

  • Miyakawa I, Sando N, Kawano S, Nakamura S, Kuroiwa T (1987) J Cell Sci 88:431–439

    Google Scholar 

  • Moore LJ, Coleman AW (1989) Plant Mol Biol 13:459–465

    Google Scholar 

  • Morin GB, Cech TR (1988) Cell 52:367–374

    Google Scholar 

  • Munz P, Wolf K, Kohli J, Leupold U (1989) Genetics overview. In: Nasim A, Young P, Johnson BF (eds) Molecular biology of the fission yeast. Academic Press, San Diego, pp 1–30

    Google Scholar 

  • Negruk VI, Eisner GI, Redichkina TD, Dumanskaya NN, Cherny DI, Alexandrov AA, Schemyakin MF, Butenko RG (1986) Theor Appl Genet 72:514–547

    Google Scholar 

  • Oda K, Kohchi T, Ohyama K (1992a) Biosci Biotech Biochem 56:132–135

    Google Scholar 

  • Oda K, Yamato K, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992b) J Mol Biol 223:1–7

    Google Scholar 

  • Okamoto K, Suzuki K, Yoshida K (1991) Jpn J Genet 66:709–718

    Google Scholar 

  • Palmer JD (1988) Genetics 118:341–351

    Google Scholar 

  • Pritchard AE, Seilhamer JJ, Mahalingam R, Sable CL, Venuti SE, Cummings DJ (1990) Nucleic Acids Res 18:173–180

    Google Scholar 

  • Robberson DL, Kasamatsu H, Vinograd J (1972) Proc Natl Acad Sci USA 69:737–741

    Google Scholar 

  • Ryan R, Grant D, Chiang K-S, Swift H (1978) Proc Natl Acad Sci USA 75:3268–3272

    Google Scholar 

  • Schäfer KP, Bugge G, Grandi M, Küntzel H (1971) Eur J Biochem 212:478–488

    Google Scholar 

  • Schulte E, Kück U, Esser K (1989) Plasmid 21:79–84

    Google Scholar 

  • Schwartz DC, Cantor CR (1984) Cell 37:67–75

    Google Scholar 

  • Simpson L (1986) Int Rev Cytol 99:119–179

    Google Scholar 

  • Skatrud PL, Queener SW (1989) Gene 78:331–338

    Google Scholar 

  • Skelly PJ, Maleszka R (1991) Curr Genet 19:89–94

    Google Scholar 

  • Smith SB, Bendich AJ (1990) Biopolymers 29:1167–1173

    Google Scholar 

  • Sparks RB Jr, Dale RMK (1980) Mol Gen Genet 180:351–355

    Google Scholar 

  • Stimberg N, Walz M, Schörgendorfer K, Kück U (1992) Appl Microbiol Biotechnol 37:485–489

    Google Scholar 

  • Synenki RM, Levings CS III, Shah DM (1978) Plant Physiol 61:460–464

    Google Scholar 

  • Takano H, Kawano S, Suyama Y, Kuroiwa T (1990) Curr Genet 18:125–131

    Google Scholar 

  • Tchurikov NA, Ponomarenko NA (1992) Proc Natl Acad Sci USA 89:6751–6755

    Google Scholar 

  • Viret J-F, Bravo A, Alonso JC (1991) Microbiol Rev 55:675–683

    Google Scholar 

  • Waddle JA, Schuster AM, Lee KW, Meints RH (1990) Plant Mol Biol 14:187–195

    Google Scholar 

  • Wallace DC (1992) Annu Rev Biochem 61:1175–1212

    Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) Cell 25:793–803

    Google Scholar 

  • Warrior R, Gall J (1985) Arch Sci 38:439–445

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L.A. Grivell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendich, A.J. Reaching for the ring: the study of mitochondrial genome structure. Curr Genet 24, 279–290 (1993). https://doi.org/10.1007/BF00336777

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00336777

Key words

Navigation