Skip to main content
Log in

Microbial biomass, N mineralization, and the activities of various enzymes in relation to nitrate leaching and root distribution in a slurry-amended grassland

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

High rates of cattle slurry application induce NO sup-inf3 leaching from grassland soils. Therefore, field and lysimeter trials were conducted at Gumpenstein (Austria) to determine the residual effect of various rates of cattle slurry on microbial biomass, N mineralization, activities of soil enzymes, root densities, and N leaching in a grassland soil profile (Orthic Luvisol, sandy silt, pH 6.6). The cattle slurry applications corresponded to rates of 0, 96, 240, and 480 kg N ha-1. N leaching was estimated in the lysimeter trial from 1981 to 1991. At a depth of 0.50 m, N leaching was elevated in the plot with the highest slurry application. In October 1991, deeper soil layers (0–10, 10–20, 20–30, 30–40, and 40–50 cm) from control and slurry-amended plots (480 kg N ha-1) were investigated. Soil biological properties decreased with soil depth. N mineralization, nitrification, and enzymes involved in N cycling (protease, deaminase, and urease) were enhanced significantly (P<0.05) at all soil depths of the slurry-amended grassland. High rates of cattle slurry application reduced the weight of root dry matter and changed the root distribution in the different soil layers. In the slurry-amended plots the roots were mainly located in the topsoil (0–10 cm). As a result of this study, low root densities and high N mineralization rates are held to be the main reasons for NO sup-inf3 leaching after heavy slurry applications on grassland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alef K, Kleiner D (1986) Arginine ammonification, a simple method to estimate microbial activity potentials in soils. Soil Biol Biochem 18:233–235

    Google Scholar 

  • Anderson J, Domsch K (1978) A physiological method for quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Google Scholar 

  • Berg P, Rosswall T (1985) Ammonium oxidizer numbers, potential and actual oxidation rates in two Swedish arable soils. Biol Fertil Soils 1:131–140

    Google Scholar 

  • Bernal MP, Kirchmann H (1992) Carbon and nitrogen mineralization and ammonia volatilization from fresh, aerobically and anaerobically treated pig manure during incubation with soil. Biol Fertil Soils 13:135–141

    Google Scholar 

  • Bushby HVA, Vallis I, Myers RJK (1992) Dynamics of C in a pasture grass (Panicum maximum var. Trichoglume) — soil system. Soil Biol Biochem 24:381–387

    Google Scholar 

  • Cooper JE (1975) Nitrification in soils incubated with pig slurry. Soil Biol Biochem 7:119–124

    Google Scholar 

  • Dick RP (1992) A review: Long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric Ecosyst Environ 40:25–36

    Google Scholar 

  • Dick RP, Rasmussen PE, Kerle EA (1988) Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system. Biol Fertil Soils 6:159–164

    Google Scholar 

  • Eder G (1991) Stickstoff- und Phosphoraustrag unter Dauergünland, ermittelt in Lysimetern. Bericht über die Gumpensteiner Lysimetertagung „Art der Sickerwassergewinnung und Ergebnissinterpretation”, Bundesanstalt für Alpenländische Landwirtschaft Gumpenstein, 45–51

  • Garwood EA (1967) Some effects of soil water conditions and soil temperature on the roots of grasses. 1. The effect of irrigation on the weight of root material under various swards. J Br Grassl Soc 22:176–181

    Google Scholar 

  • Flowers TH, O'Callaghan JR (1983) Nitrification in soils incubated with pig slurry or ammonium sulphate. Soil Biol Biochem 15:337–342

    Google Scholar 

  • Hoffmann G (1968) Eine photometrische Methode zur Bestimmung der Phosphatase-Aktivität in Böden. Z Pflanzenernaehr Bodenkd 118:161–172

    Google Scholar 

  • Hoffmann G (1991) Methodenbuch, Band 1: Die Untersuchung von Böden. 4. Auflage. VDLUFA-Verlag, Darmstadt

    Google Scholar 

  • Hynes RK, Knowles R (1983) Inhibition of chemoautotrophic nitrification by sodium chlorate and sodium chlorite: A reexamination. Appl Environ Microbiol 45:1178–1182

    Google Scholar 

  • Jäggi W (1976) Die Bestimmung der CO2-Bildung als Maß der bodenbiologischen Aktivität. Schweiz Landwirtsch Forsch 15:371–380

    Google Scholar 

  • Kandeler E, Eder G (1993) Effect of cattle slurry in grassland on microbial biomass and on activities of various enzymes. Biol Fertil Soil 16:249–254

    Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72

    Google Scholar 

  • Keeney DR (1982) Nitrogen-availability indices. In: Page AL, Miller RH, Kenney DR (eds) Methods of soil analysis, Part 2. Am Soc Agron, Madison, pp 711–733

    Google Scholar 

  • Laanbroek HK, Gerards S (1991) Effects of organic manure on nitrification in arable soils. Biol Fertil Soil 12:147–153

    Google Scholar 

  • Ladd JN, Butler JHA (1972) Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivates as substrates. Soil Biol Biochem 4:19–30

    Google Scholar 

  • McAndrew DW, Malhi SS (1992) Long-term N fertilization of a solonetzic soil: Effects on chemical and biological properties. Soil Biol Biochem 24:619–623

    Google Scholar 

  • Murer E (1987) Aus der Forschungs- und Versuchstätigkeit der Bundesanstalt für Kulturtechnik und Bodenwasserhaushalt, A-3252 Petzenkirchen, Information Nr. 13, Selbstverlag

  • Nannipieri P, Muccini L, Ciardi C (1983) Microbial biomass and enzyme activities: Production and persistence. Soil Biol Biochem 15:679–685

    Google Scholar 

  • Opperman MH, Wood M, Harris PJ (1989) Changes in inorganic N following the application of cattle slurry to soil at two temperatures. Soil Biol Biochem 21:319–321

    Google Scholar 

  • Paustian K, Parton WJ, Persson J (1992) Modeling soil organic matter in organic-amended and nitrogen-fertilized long-term plots. Soil Sci Soc Am J 56:476–488

    Google Scholar 

  • Scherer HW, Werner W, Kohl A (1988) Einfluß langjähriger Gülledüngung auf den Nährstoffhaushalt des Bodens 1. Mitteilung: N-Akkumulation und N-Nachlieferungsvermögen. Z Pflanzenernaehr Bodenkd 151:57–61

    Google Scholar 

  • Schinner F, Öhlinger R, Kandeler E (1991) Bodenbiologische Arbeitsmethoden. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Smucker AJM, McBurney SL, Srivastava AK (1982) Quantitative separation of roots from compacted soil profiles by the Hydropneumatik Elutriation Systems. Agron J 74:500–503

    Google Scholar 

  • Schnürer J, Clarholm M, Rosswall T (1985) Microbial biomass and activity in agricultural soil with different organic matter contents. Soil Biol Biochem 17:611–618

    Google Scholar 

  • Sobotik M (1992) Durchwurzelungsdichte und-tiefe unter Dauergrünland bei steigenden Gaben von Rindergülle und ihr Einfluß auf die Sickerwassermenge. In: Eder G (ed) Praktische Ergebnisse aus der Arbeit mit Lysimetern. Bundesanstalt für alpenländische Landwirtschaft, pp 69–78

  • Stadelmann FX (1982) Die Wirkung steigender Gaben von Klärschlamm und Schweinegülle in Feldversuchen. II. Auswirkungen auf Population und Aktivität von Bodenmikro-organismen. Schweiz Landwirtsch Forsch 21:239–259

    Google Scholar 

  • Thun R, Herrmann R (1949) Die Untersuchung von Böden. Neumann, Radebeul Berlin, pp 15–28

    Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and proposed modification of chromic tritration method. Soil Sci 37:29–38

    Google Scholar 

  • Wedin DA, Tilman D (1990) Species effects on nitrogen cycling: A test with perennial grasses. Oecology 84:433–441

    Google Scholar 

  • Whitehead DC (1970) The role of nitrogen in grassland productivity. Bull 48, Commonw Bur Pastures Field Crops, Hurley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandeler, E., Eder, G. & Sobotik, M. Microbial biomass, N mineralization, and the activities of various enzymes in relation to nitrate leaching and root distribution in a slurry-amended grassland. Biol Fertil Soils 18, 7–12 (1994). https://doi.org/10.1007/BF00336437

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00336437

Key words

Navigation