Skip to main content
Log in

Microbiological processes in soil organic phosphorus transformations in conventional and biological cropping systems

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

We studied microbiological processes in organic P transformations in soils cultivated with conventional and biological farming systems during the 13th and 14th year of different cropping systems. The treatments included control, biodynamic, bioorganic, and conventional plots and a mineral fertilization treatment. Different P fractions were investigated using a sequential fractionation method. Labile organic P, extracted by 0.5 M NaHCO3, was not affected by the farming systems. However, residual organic P remaining in the soil at the end of the sequential fractionation procedure showed that the biodynamic treatment, in particular, led to a modification of the composition of organic P. Labile organic P, organic P extractable in 0.1 M NaOH, and total residual P all showed temporal fluctuations. As total residual P consists of more than 70% organic P, it can be assumed that residual organic P contributed to these variations. This result indicates that chemically resistant organic P participates in short-term accumulation and mineralization processes. All biological soil parameters tested in this study showed significant temporal fluctuations, mainly attributed to differences in climatic conditions between years, but possibly also related to the growth cycle of the crop. The higher values of the biological soil parameters in the biodynamic and bioorganic treatments were explained by the greater importance of manure and the different plant protection strategies. The level of phosphatase activity and mineralization of organic C indicated a higher turnover of organic substrates, and thus of organic P, in the biodynamic and bioorganic treatments. Biological parameters were shown to be critical for assessing the significance of organic P in the soil P turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alföldi T, Mäder P, Oberson A, Spiess E, Niggli U, Besson J-M (1993) DOK-Versuch: Vergleichende Langzeituntersuchungen in den drei Anbausystemen biologisch-Dynamisch, Organisch-biologisch und Konventionell. III. Boden: Chemische Untersuchungen, 1. und 2. Fruchtfolgeperiode. Schweiz Landwirtsch Forsch 32:479–507

    Google Scholar 

  • Besson J-M, Niggli U (1991) DOK-Versuch: Vergleichende Langzeit-untersuchungen in den drei Anbausystemen biologisch-Dynamisch, Organisch-biologisch und Konventionell. I. Konzeption des DOK-Versuchs:1. und 2. Fruchtfolgeperiode. Schweiz Landwirtsch Forsch 31:79–109

    Google Scholar 

  • Besson J-M, Meyre S, Spiess E, Stauffer W, Niggli U (1993) DOK-Versuch: Vergleichende Langzeituntersuchungen in den drei Anbausystemen biologisch-Dynamisch, Organisch-biologisch und Konventionell. II. Ertrag der Kulturen: Randen, 2. Fruchtfolgeperiode. Schweiz Landwirtsch Forsch 32:449–463

    Google Scholar 

  • Bowman RA, Cole CV (1978) Transformations of organic phosphorus substrates in soils as evaluated by NaHCO3 extraction. Soil Sci 125:49–54

    Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329

    Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1984) Phosphorus in the soil microbial biomass. Soil Biol Biochem 16:169–175

    Google Scholar 

  • Buchanan M, King LD (1992) Seasonal fluctuations in soil microbial biomass carbon, phosphorus, and activity in no-till and reducedchemical-input maize agroecosystems. Biol Fertil Soils 13:11–217

    Google Scholar 

  • Burns RG (1982) Enzyme activity in soil: Location and a possible role in microbial ecology. Soil Biol Biochem 14:423–427

    Google Scholar 

  • Condron LM, Goh KM, Newman RH (1985) Nature and distribution of soil phosphorus as revealed by a sequential extraction method followed by 31P nuclear magnetic resonance analysis. J Soil Sci 36:199–207

    Google Scholar 

  • Dalal RC (1977) Soil organic phosphorus. Adv Agron 29:83–117

    Google Scholar 

  • Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol Biochem 9:167–172

    Google Scholar 

  • Foissner W (1987) The micro-edaphon in ecofarmed and conventionally farmed dryland cornfields near Vienna (Austria). Biol Fertil Soils 3:45–59

    Google Scholar 

  • Goval S, Mishra MM, Dhankar SS, Kapoor KK, Batra R (1993) Microbial biomass turnover and enzyme activities following the application of farmyard manure to field soils with and without previous long-term applications. Biol Fertil Soils 15:60–64

    Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    Google Scholar 

  • Helal HM (1990) Varietal differences in root phosphatase activity as related to the utilization of organic phosphates. Plant and Soil 123:161–163

    Google Scholar 

  • Herbien SA, Neal JL (1990) Soil pH and phosphatase activity. Commun Soil Sci Plant Anal 21: 439–456

    Google Scholar 

  • Hoffmann G (1967) Eine photometrische Methode zur Bestimmung der Phosphatase-Aktivität in Böden. Z Pflanzenernähr Bodenkd 118:161–172

    Google Scholar 

  • Läggi W (1976) Die Bestimmung der CO2-Bildung als Mass der bodenbiologischen Aktivität. Scheweiz Landwirtsch Forsch 15: 371–380

    Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: Measurement and turnover. Soil Biochem 5:415–471

    Google Scholar 

  • Jenkinson DS, Davidson SA, Powlson DS (1979) Adenosine triphosphate and microbial biomass in soil. Soil Biol Biochem 11: 521–527

    Google Scholar 

  • Kucey RMN, Janzen HH, Leggett ME (1989) Microbially mediated increases in plant-available phosphorus. Adv Agron 42: 199–228

    Google Scholar 

  • Lischer P (1990) Statistik und Ringversuche. Schriftenreihe FAC Liebefeld Nr. 6, Liebefeld-Bern

  • Lützow M von, Ottow JCG (1994) Einfluss von konventioneller und biologisch-dynamischer Bewirtschaftungsweise auf die mikrobielle Biomasse und deren Stickstoff-Dynamik in Parabraunerden der Friedberger Wetterau. Z Pflanzenernähr Bodenkd 157:359–356

    Google Scholar 

  • Mäder P, Pfiffnet L, Jäggi W, Wiemken A, Niggli U, Besson J-M (1993) DOK-Versuch: Vergleichende Langzeituntersuchungen in den drei Anbausystemen biologisch-Dynamisch, Organisch-biologisch und Konventionell. III. Boden: Mikrobiologische Untersuchungen. Schweiz Landwirtsch Forsch 32: 509–545

    Google Scholar 

  • Maire N (1983) Etude du repeuplement d'une tourbe stérilisée, par quatre méthodes biologiques globales (ATP, dégagement de CO2, phosphatase et urase). Rech Agron Suisse 22:221–246

    Google Scholar 

  • Maire N (1984) Extraction de l'adenosine tríphosphate dans les sols: Une nouvelle méthode de calcul des pertes en ATP. Soil Biol Biochem 16: 361–366

    Google Scholar 

  • Maire N (1987) Evaluation de la vie microbienne dans les sols par un système d'analyses biochimiques standardisé. Soil Biol Biochem 19:491–500

    Google Scholar 

  • Maire N, Besson JM, Suter H, Hasinger G, Palasthy A (1990) Influence des pratiques culturales sur l'équilibre physico-chimique et biologique des sols agricoles. Rech Agron Suisse 29:61–74

    Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of C, N, S, and P cycling through soil organic matter during pedogenesis. Geoderma 26:267–286

    Google Scholar 

  • Nannipieri P, Muccini L, Ciardi C (1983) Microbial biomass and enzyme activities: Production and persistence. Soil Biol Biochem 15:679–685

    Google Scholar 

  • Oberson A (1993) Phosphordynamik in biologisch und konventionell bewirtschafteten Böden des DOK-Versuchs. Ph Dissertation, Federal Institute of Technology Zürich

  • Oberson A, Fardeau J-C, Besson J-M, Sticher H (1993) Soil phosphorus dynamics in cropping systems managed according to conventional and biological agricultural methods. Biol Fertil Soils 16:111–117

    Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2. Am Soc Agron, Madison, Wis, pp 403–430

    Google Scholar 

  • Perrott KW, Sarathchandra SU, Waller JE (1990) Seasonal storage and release of phosphorus and potassium by organic matter and the microbial biomass in a high-producing pastoral soil. Aust J Soil Res 28:593–608

    Google Scholar 

  • Sharpley AN (1985) Phosphorus cycling in unfertilized and fertilized agricultural soils. Soil Sci Soc Am J 49:905–911

    Google Scholar 

  • Speir TW, Ross DJ (1978) Soil phosphatase and sulphatase. In: Burns RG (ed) Soil enzymes. Academic Press, New York, pp 197–250

    Google Scholar 

  • Spiess E, Meyre S, Oberson A, Stauffer W, Niggli U, Besson J-M (1993) DOK-Versuch: Vergleichende Langzeituntersuchungen in den drei Anbausystemen biologisch-Dynamisch, Organisch-biologisch und Konventionell. II. Ertrag der Kulturen: Weizen, 1. und 2. Fruchtfolgeperiode. Schweiz Landwirtsch Forsch 32:429–448

    Google Scholar 

  • Stewart JWB, Sharpley AN (1987) Controls on dynamics of soil and fertilizer phosphorus and sulfur. In: Soil Sci Soc Am (eds). Soil fertility and organic matter as critical components of production systems. SSSA Spec Publ No. 19, Madison, Wis, pp 101–121

  • Stewart JWB, Tiessen H (1987) Dynamics of soil organic phosphorus. Biogechemistry 4:41–60

    Google Scholar 

  • Tabatabai MA (1982) Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2. Am Soc Agron, Madison, Wis, pp 903–947

    Google Scholar 

  • Tarafdar JC, Claassen N (1988) Organic compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312

    Google Scholar 

  • Tarafdar JC, Kiran B, Rao AV (1989) Phosphatase activity and distribution of phosphorus in arid soil profiles under different land use patterns. J Arid Environ 16:29–34

    Google Scholar 

  • Tate KR, Speir TW, Ross DJ, Parfitt RL, Whale KN, Cowling JC (1991a) Temporal variations in some plant and soil P pools in two pasture soils of widely different P fertility status. Plant and Soil 132:219–232

    Google Scholar 

  • Tate KR, Ross DJ, Ramsay AJ, Whale KN (1991b) Microbial biomass and bacteria in two pasture soils: An assessment of measurement procedures, temporal variations, and the influence of P fertility status. Plant and Soil 132:233–241

    Google Scholar 

  • Tiessen H, Moir JO (1993) Characterization of available P by sequential extraction. In: Carter MR (ed) Soil sampling and methods of analysis. Can Soc of Soil Science, Lewis Publishers, Boca Raton, Fla, pp 75–86

    Google Scholar 

  • Witter E, Martensson AM, Gracia FV (1993) Size of the soil microbial biomass in a long-term field experiment as affected by different N-fertilizers and organic manures. Soil Biol Biochem 25:659–669

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberson, A., Besson, J.M., Maire, N. et al. Microbiological processes in soil organic phosphorus transformations in conventional and biological cropping systems. Biol Fertil Soils 21, 138–148 (1996). https://doi.org/10.1007/BF00335925

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00335925

Key words

Navigation