Skip to main content
Log in

The kalilo linear senescence-inducing plasmid of Neurospora is an invertron and encodes DNA and RNA polymerases

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The nucleotide sequence of kalilo, a linear plasmid that induces senescence in Neurospora by intergrating into the mitochondrial chromosome, reveals structural and genetic features germane to the unique properties of this element. Prominent features include: (1) very long perfect terminal inverted repeats of nucleotide sequences which are devoid of obvious genetic functions, but are unusually GC-rich near both ends of the linear DNA; (2) small imperfect palindromes that are situated at the termini of the plasmid and are cognate with the active sites for plasmid integration into mtDNA; (3) two large, non-overlapping open-reading frames, ORF-1 and ORF-2, which are located on opposite strands of the plasmid and potentially encode RNA and DNA polymerases, respectively, and (4) a set of imperfect palindromes that coincide with similar structures that have been detected at more or less identical locations in the nucleotide sequences of other linear mitochondrial plasmids. The nucleotide sequence does not reveal a distinct gene that codes for the protein that is attached to the ends of the plasmid. However, a 335-amino acid, cryptic, N-terminal domain of the putative DNA polymersse might function as the terminal protein. Although the plasmid has been co-purifed with nuclei and mitochondria, its nucleotide composition and codon usage indicate that it is a mitochondrial genetic element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Malik MS, Court DA, Cheng C-K, Bertrand H (1990) Nucleic Acids Res 18:7440

    Google Scholar 

  • Akins RA, Kelley RL., Lambowitz AM (1986) Cell 47:505–516

    Google Scholar 

  • Aleström P, Akusjärvi G, Petterson M, petterson U (1982) J Biol Chem 257:13492–13498

    Google Scholar 

  • Baer R, Bankier AT, Beggin MD, Deininger PL, Farrell PL, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Seguin C, Tufnell PS, Barrell BG (1984) Nature 310:207–211

    Google Scholar 

  • Belcour L, Begel O, Keller AM, Vierny C (1982) In: Slonimsky P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 415–421

    Google Scholar 

  • Bernad A, Zaballos A, Salas M, Blanco L (1987) EMBO J 6:4219–4225

    Google Scholar 

  • Bernad A, Blanco L, Lázaro JM, Martin G, Salas M (1989) Cell 59:219–228

    Google Scholar 

  • Bertrand H (1983) In: Regelson W, Sinex FM (eds) Intervention in the aging process, Part B: Basic research and preclinical screening. Alan R Liss, New York, pp 233–251

    Google Scholar 

  • Bertrand H (1986) In: Wickner RB, Hinnebusch A, Lambowitz AM, Gunsalus IC, Hollaender A (eds) Extrachromosomal elements in lower eukaryotes, Basic Life Sciences, vol 40. Plenum Press, New York, pp 93–103

    Google Scholar 

  • Bertrand H, Griffiths AJF (1989) Genome 31:155–159

    Google Scholar 

  • Bertrand H, Collins RA, Stohl LL, Goewert R, Lambowitz AM (1980) Proc Natl Acad Sci USA 77:6032–6036

    Google Scholar 

  • Bertrand H, Chan BS-S, Griffiths AJF (1985) Cell 41:877–884

    Google Scholar 

  • Bertrand H, Griffiths AJF, Court DA, Cheng CK (1986) Cell 47:829–837

    Google Scholar 

  • Bingham PM, Zachar Z (1989) In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 485–502

    Google Scholar 

  • Böckelmann B, Esser K (1986) Curr Genet 10:803–810

    Google Scholar 

  • Braum CJ, Sisco PH, Sederoff RR, Levings III CS (1982) Curr Genet 10:625–630

    Google Scholar 

  • Burke JM, RajBhandary UL (1982) Cell 31:509–520

    Google Scholar 

  • Court DA, Bertrand H (1991) Nucleic Acids Res 19:1714

    Google Scholar 

  • Court DA, Griffiths AJF, Kraus SR, Russell PJ, Bertrand H (1991) Curr Genet 19:129–137

    Google Scholar 

  • Dasgupta J, Chan BS-S, Keith MA, Bertrand H (1988) Genome 30 (suppl 1):318

    Google Scholar 

  • Düvell A, Hessberg-Stutzke H, Oeser B, Rogmann-Backwinkel P, Tudzynski P (1988) Mol Gen Genet 214:128–134

    Google Scholar 

  • Erickson L, Beversdorf ED, Pauls KP (1985) Curr Genet 9:679–682

    Google Scholar 

  • Escarmís C, Salas M (1982) Nucleic Acids Res 10:5785–5798

    Google Scholar 

  • Escarmís C, Gómez A, García E, Ronda C, López R, Salas M (1984) Virology 133:166–171

    Google Scholar 

  • Esser K, Kück U, Lang-Hinrichs C, Lemke P, Osiewacz HD, Stahl U, Tudzynski P (1986) Plasmids of eukaryotes, fundamentals and applications. Springer-Verlag, Berlin

    Google Scholar 

  • Francou F (1981) Mol Gen Genet 184:440–444

    Google Scholar 

  • Fütterer J, Winnacker E-L (1984) Curr Top Microbiol Immunol 111:41–64

    Google Scholar 

  • Garcia Jr JA, Kolacz K, Studnicka GM, Gilmore-Hebert M (1988) Nucleic Acids Res 16:4169–4170

    Google Scholar 

  • Gingeras TR, Sciaky D, Gelinas RE, Jiang B-D, Yen CE, Kelly MM, Bullock PA, Parsons BL, O'Neill KE, Roberts RJ (1982) J Biol Chem 257:13475–13491

    Google Scholar 

  • Griffiths AJF, Bertrand H (1984) Curr Genet 8:387–398

    Google Scholar 

  • Gross SR, Hsieh T, Levine PH (1984) Cell 38:233–239

    Google Scholar 

  • Henikoff S (1984) Gene 28:351–359

    Google Scholar 

  • Hirochika H, Nakamura K, Sakaguchi K (1984) EMBO J 3:761–766

    Google Scholar 

  • Hermoso JM, Méndez E, Soriano F, Salas M (1985) Nucleic Acids Res 13:7715–7728

    Google Scholar 

  • Hishinuma F, Nakamura K, Hirai K, Nishizawa R, Gunge N, Maeda T (1984) nucleic Acids Res 12:7581–7597

    Google Scholar 

  • Horwitz MS (1988) In: Fields BN, Knipe DM (eds) Virology, Raven Press, New York, pp 1679–1721

    Google Scholar 

  • Ikeda RA, Richardson CC (1987) J Biol Chem 262:3800–3808

    Google Scholar 

  • Kemble RJ, Thompson RD (1982) Nucleic Acids Res 10:8181–8190

    Google Scholar 

  • Kemble RJ, Mans RJ, Gabay-Laugnan S, Laughman JR (1983) Nature 304:744–747

    Google Scholar 

  • Kempken F, Meinhardt F, Esser K (1989) Mol Gen Genet 218:523–530

    Google Scholar 

  • Keppel F, Fayet O, Georgopolus C (1988) In: Calendar R (ed) The Bacteriophages, vol 2. Plenum Press, New York

    Google Scholar 

  • Kikuchi Y, Hirai K, Hishinuma F (1984) Nucleic Acids Res 12:5685–5692

    Google Scholar 

  • Kistler HC, Leong SA (1986) J Bacteriol 167:587–593

    Google Scholar 

  • Kitada K, Hishinuma F (1987) Mol Gen Genet 206:377–381

    Google Scholar 

  • Kotani H, Ishizaki Y, Hiraoka N, Obayashi A (1987) Nucleic Acids Res 15:2653–2664

    Google Scholar 

  • Kuzmin EV, Levchenko IV (1987) Nucleic Acids Res 15:6758

    Google Scholar 

  • Kuzmin EV, Levchenko IV, Zaitseva G (1988) Nucleic Acids Res 16:4177

    Google Scholar 

  • Lechner RL, Kelly Jr TJ (1977) Cell 12:1007–1020

    Google Scholar 

  • Lewin B (1987) Genes III. John Wiley and Sons, Toronto

    Google Scholar 

  • Levings III CS, Sederoff RR (1983) Proc Natl Acad Sci USA 80:4055–4059

    Google Scholar 

  • Lonsdale DM, Thompson RD, Hodge TP (1981) Nucleic Acids Res 9:3657–3668

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Marcou D (1961) Ann Sci Nat, Bot, 12e série: 653–763

  • Masters BS, Stohl LL, Clayton DA (1987) Cell 51:89–99

    Google Scholar 

  • McGraw NJ, Bailey JN, Cleaves GR, Dembinski DR, Gocke CR, Joliffe LK, MacWright RS, McAllister WT (1985) Nucleic Acids Res 13:6753–6766

    Google Scholar 

  • Meinhardt F, Kempken F, Esser K (1986) Curr Genet 11:243–246

    Google Scholar 

  • Meinhardt F, Kempken F, Kämper J, Esser K (1990) Curr Genet 17:89–95

    Google Scholar 

  • Meints RH, Hu W, Schuster A, Timothy DH, Levings III CS (1989) Maydica 34:197–205

    Google Scholar 

  • Mellado RP, Moreno F, Viñuela E, Salas M, Reilly BE, Anderson DL (1976) J Virol 19:495–500

    Google Scholar 

  • Meyer RJ, Hintz WA, Mohan M, Robison M Anderson JB, Horgen PA (1988) Genome 30:710–716

    Google Scholar 

  • Moffatt BA, Dunn JJ, Studier FW (1984) J Mol Biol 173:265–269

    Google Scholar 

  • Myers CJ, Griffiths AJF, Bertrand H (1989) Mol Gen Genet 220:113–120

    Google Scholar 

  • Nargang FE, Bertrand H, Werner S (1978) J Biol Chem 253:6364–6369

    Google Scholar 

  • Nargang FE, Bell JB, Stohl LL, Lambowitz AM (1984) Cell 38:441–453

    Google Scholar 

  • Oeser B (1988) Nucleic Acids Res 16:8729

    Google Scholar 

  • Oeser B, Tudzynski P (1989) Mol Gen Genet 217:132–140

    Google Scholar 

  • O'Hare K, Murphy C, Levis R, Rubin GM (1984) J Mol Biol 180:437–455

    Google Scholar 

  • Ollis DL, Kline C, Steitz TA (1985) Nature 313:818–819

    Google Scholar 

  • Paillard M, Sederoff RR, Levings III CS (1985) EMBO J 4:1125–1128

    Google Scholar 

  • Palmer JD (1985) Annu Rev Genet 19:325–354

    Google Scholar 

  • Petit CS, Horwitz MS, Engler JA (1988) J Virol 62:496–500

    Google Scholar 

  • Quinn JP, McGeoch DJ (1985) Nucleic Acids Res 13:8143–8163

    Google Scholar 

  • Rieck A, Griffiths AJF, Bertrand H (1982) Can J Genet Cytol 24:741–759

    Google Scholar 

  • Robison MM, Royer JC, Horgen PA (1991) Curr Genet 19 (in press)

  • Sakaguchi K (1990) Microbiol Rev 54:66–74

    Google Scholar 

  • Sakaguchi K, Hirochika H, Gunge N (1985) In: Helinski DR, Cohen SN (eds) Plasmids in Bacteria. Plenum Publishing Corp, New York, pp 433–451

    Google Scholar 

  • Salas M (1983) Curr Top Microbiol Immunol 109:89–106

    Google Scholar 

  • Salas M (1988) In: Calendar R (ed) The Bacteriophages, vol 1. Plenum Press, New York, pp 169–192

    Google Scholar 

  • Samac DA, Leong SA (1988) Plasmid 19:57–67

    Google Scholar 

  • Samac DA, Leong SA (1989b) Curr Genet 16:187–194

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Savilahti H, Bamford DH (1986) Gene 49:199–205

    Google Scholar 

  • Savilahti H, Bamford DH (1987) Gene 57:121–130

    Google Scholar 

  • Schardl CL, Lonsdale DM, Pring DR, Rose KR (1984) Nature 310:292–296

    Google Scholar 

  • Schardl CL, Pring DR, Lonsdale DM (1985) Cell 43:361–368

    Google Scholar 

  • Smart JE, Stillman BW (1982) J Biol Chem 257:13499–13506

    Google Scholar 

  • Sor F, Fukuhara H (1985) Curr Genet 9:147–155

    Google Scholar 

  • Stahl SJ, Zinn K (1981) J Mol Biol 148:481–485

    Google Scholar 

  • Stark MJR, Mileham AJ, Romanos MA, Boyd A (1984) Nucleic Acids Res 12:6011–6030

    Google Scholar 

  • Stillman BW (1983) Cell 35:7–9

    Google Scholar 

  • Stillman BW, Lewis JB, Chow LT, Mathews MB, Smart JE (1981) Cell 23:497–508

    Google Scholar 

  • Stillman BW, Tamanoi F, Mathews MB (1982) Cell 31:613–623

    Google Scholar 

  • Stow ND (1982) Nucleic Acids Res 10:5105–5119

    Google Scholar 

  • Sussenbach JS, van der Vliet PC (1983) Curr Topics Microbiol Immunol 109:53–73

    Google Scholar 

  • Tommasino M, Ricci S, Galeotti CL (1988) Nucleic Acids Res 16:5863–5878

    Google Scholar 

  • Truett MA, Jones RS, Potter SS (1981) Cell 24:753–763

    Google Scholar 

  • Tudzynski P, Esser K (1979) Mol Gen Genet 173:71–84

    Google Scholar 

  • Tudzynski P, Esser K (1986) Curr Genet 10:463–467

    Google Scholar 

  • Turpen T, Garger SJ, Marks MD, Grill LK (1987) Mol Gen Genet 209:227–233

    Google Scholar 

  • Vartapetian AB, Bogdanov AA (1987) Prog Nucleic Acid Res Mol Biol 34:209–251

    Google Scholar 

  • Vierula PJ, Cheng CK, Court DA, Humphrey RW, Thomas DY, Bertrand H (1990) Curr Genet 17:195–201

    Google Scholar 

  • Vlcek C, Paces V (1986) Gene 46:215–225

    Google Scholar 

  • Vogel JH (1956) Microbiol Genet Bull 13:42–43

    Google Scholar 

  • Volkert FC, Wilson DC, Broach JR (1989) Microbiol Rev 53:299–317

    Google Scholar 

  • Vries H de, Jonge JC de, Sant P van't, Agsteribbe E (1981) Curr Genet 3:205–211

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Google Scholar 

  • Yoshikawa H, Ito J (1981) Proc Natl Acad Sci USA 78:2596–2600

    Google Scholar 

  • Yoshikawa H, Ito J (1982) Gene 17:323–335

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. S. Levings III

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiu-Shing Chan, B., Court, D.A., Vierula, P.J. et al. The kalilo linear senescence-inducing plasmid of Neurospora is an invertron and encodes DNA and RNA polymerases. Curr Genet 20, 225–237 (1991). https://doi.org/10.1007/BF00326237

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326237

Key words

Navigation