Skip to main content
Log in

The endolymphatic duct and sac of the rat: a histological, ultrastructural, and immunocytochemical investigation

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

A study of the ultrastructure, vascularization, and innervation of the endolymphatic duct and sac of the rat has been performed by means of light- and electron-microscopic and immunocytochemical methods. Two different types of epithelial cells have been identified: the ribosome-rich cell and the mitochondria-rich cell. These two cell types make up the epithelium of the complete endolymphatic duct and sac, although differences in their quantitative distribution exist. The morphology of the ribosome-rich cells varies between the different parts of the endolymphatic duct and sac; the morphology of the mitochondria-rich cells remains constant. According to the epithelial composition, vascularization, and structural organization of the lamina propria, both duct and sac are subdivided into three different parts. A graphic reconstruction of the vascular network supplying the endolymphatic duct and sac shows that the vascular pattern varies among the different parts. In addition, the capillaries of the duct are of the continuous type, whereas those supplying the sac are of the fenestrated type. Nerve fibers do not occur within the epithelium of the endolymphatic duct and sac. A few nerve fibers regularly occur in the subepithelial compartment close to the blood vessels; these fibers have been demonstrated in whole-mount preparations by the application of the neuronal marker protein gene product 9.5. Single beaded fibers immunoreactive to substance P and calcitonin-gene related peptide are observed within the same compartment. Dopamine-β-hydroxylase-immunoreactive axons are restricted to the walls of arterioles. Morphological differences between the different portions of the endolymphatic duct and sac are discussed with regard to possible roles in fluid absorption and immunocompetence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CGRP:

Calcitonin gene-related peptide

DSP:

distal sac portion

DβH:

dopamine-β-hydroxylase

ED:

endolymphatic duct

ES:

endolymphatic sac

EDP:

enlarged duct portion

IR:

immunoreactive

ISP:

intermediate sac portion

LIS:

lateral intercellular space

NDP:

narrow duct portion

PMA:

posterior meningeal artery

PVA:

posterior vestibular artery

PGP 9.5:

protein gene product 9.5

PSP:

proximal sac portion

SP:

substance P

TDP:

transitional duct portion

VVA:

vem of vestibular aqueduct

References

  • Andres KH, Düring M von (1981) General methods for characterization of brain regions. In: Heym C, Forssmann WG (eds) Techniques in neuroanatomical research. Springer, Berlin Heidelberg New York, pp 100–108

    Google Scholar 

  • Andres KH, Düring M von, Muszynski K, Schmidt RF (1987) Nerve fibers and their terminals of the dura mater encephali of the rat. Anat Embryol 175:289–301

    Google Scholar 

  • Arnold W, Altermatt HJ, Gebbers JO (1984) Qualitativer Nachweis von Immunglobulinen im menschlichen Saccus endolymphaticus. Laryngol Rhinol Otol 63:464–467

    Google Scholar 

  • Arnvig J (1951) Lymph vessels in the wall of the endolymphatic sac. Arch Otolaryngol 53:290–295

    Google Scholar 

  • Bagger-Sjöbäck D, Rask-Andersen H (1986) The permeability barrier of the endolymphatic sac. A hypothesis of fluid and electrolyte exchange based on freeze fracturing. Am J Otol 7: 134–140

    Google Scholar 

  • Bagger-Sjöbäck D, Friberg U, Rask-Andersen H (1986) The human endolymphatic sac. Arch Otolaryngol Head Neck Surg 112:398–409

    Google Scholar 

  • Barbara M, Rask-Andersen H, Bagger-Sjöbäck D (1987) Ultrastructure of the endolymphatic sac in the Mongolian gerbil. Arch Otorhinolaryngol 244:284–287

    Google Scholar 

  • Bast TH, Anson BJ (1949) The temporal bone and the ear. Thomas, Springfield, Illinois

    Google Scholar 

  • Boettcher A (1869) Über den Aquaeductus vestibuli bei Katzen und Menschen. Arch Anat Physiol 36:372–381

    Google Scholar 

  • Bowman B, Dschida W, Bowman EJ (1992) Vacuolar ATPase of Neurospora crassa: Electron microscopy, gene characterization and gene inactivation/mutation. J Exp Biol 172:57–66

    Google Scholar 

  • Brechtelsbauer PB, Baxter AR, Prazma J, Xie DH, Pillsbury HC (1992) Inhervation of the endolymphatic sac. Arch Otolaryngol Head Neck Surg 118:260–264

    Google Scholar 

  • Cotugno D (1774) De aquaeductibus auris humanae internae. Graeffer, Viennae

    Google Scholar 

  • Düring M von, Bauersachs M, Böhmer B, Veh RW, Andres KH (1990) Neuropeptide Y- and substance P-like immunoreactive nerve fibers in the rat dura mater encephali. Anat Embryol 182:363–373

    Google Scholar 

  • Friberg U, Wackym PA, Bagger-Sjöbäck D, Rask-Andersen H (1986) Effect of labyrinthectomy on the endolymphatic sac. Acta Otolaryngol (Stockh) 101:172–182

    Google Scholar 

  • Friedrich VL, Mugnaini E (1981) Preparation of neural tissue for electron microscopy. In: Heimer L, Robards MJ (eds) Neuroanatomical tract-tracing methods. Plenum Press, New York London, pp 345–374

    Google Scholar 

  • Gadre AK, Fayad JN, O'Leary MJ, Zakhary R, Linthicum FH Jr (1993) Arterial supply of the human endolymphatic duct and sac. Otolaryngol Head Neck Surg 108:141–148

    Google Scholar 

  • Guild SR (1927) Observations upon the structure and normal contents of the ductus and saccus endolymphaticus in the guinea pig (Cavia cobava). Am J Anat 39:1–56

    Google Scholar 

  • Hasse C (1873) Die Lymphbahnen des inneren Ohres der Wirbelthiere. Anat Studien 1:765–816

    Google Scholar 

  • Hozawa K, Takasaka T (1993) Sympathetic and CGRP-positive nerve supply to the endolymphatic sac of guinea pigs. Acta Otolaryngol Suppl (Stockh) 506:14–17

    Google Scholar 

  • Hozawa K, Takasaka T, Kimura RS (1991) Vestibular sympathetic nervous system in guinea pig. Acta Otolaryngol Suppl (Stockh) 481:95–96

    Google Scholar 

  • Hulterantz M, Bagger-Sjöbäck D, Rask-Andersen H (1988) The pre- and postnatal maturation of the epithelium in the endolymphatic sac. An electron microscopic survey. Acta Otolaryngol (Stockh) 105:303–311

    Google Scholar 

  • Karnowsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27: 137A

  • Keller JT, Marfurt CF, Dimlich RVW, Tierney BE (1989) Sympathetic innervation of the supratentorial dura mater of the rat. J Comp Neurol 290:310–321

    Google Scholar 

  • Küppers J, Plagemann A, Thurm U (1986) Uphill transport of water by electroosmosis. J Membrane Biol 91:107–119

    Google Scholar 

  • Lembeck F, Holzer P (1979) Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn-Schmiedebergs Arch Pharmacol 310:175–183

    Google Scholar 

  • Lundquist PG (1965) The endolymphatic duct and sac in the guinea pig: an electron microscopic and experimental investigation. Acta Otolaryng (Stockh) [Suppl] 201

  • McDonald DM (1988) Neurogenic inflammation in the rat trachca. I. Changes in venules, leucocytes and epithelial cells. J Neurocytol 17:583–603

    Google Scholar 

  • Manni JJ (1987) The endolymphatic duct and sac of the rat. A histophysiological study. (S.l:s.n.) — III. Thesis Nijmegen. Druk:ssn, Nijmegen, 1987, pp 1–117

  • Markowitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 7:4129–4136

    Google Scholar 

  • Meßlinger K, Hanesch U, Baumgärtel M, Trost B, Schmidt RF (1993) Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity. Anat Embryol 188:219–237

    Google Scholar 

  • Morgenstern C (1985) Pathophysiologie, Klinik und konservative Therapie der Menièreschen Erkrankung. Arch Otorhinolaryngol [Suppl] 1:1–66

    Google Scholar 

  • Nakai Y, Masutani H, Cho H (1986) Scanning electron microscopy of the microvascular system in the inner ear. Scanning Electron Microsc 2:543–548

    Google Scholar 

  • Noirot Ch, Noirot-Timothée C (1971) Ultrastructure du proctodeum chez le Thysanoure Lepismodes inquilinus Newman (=Theramobia domestica Pachard) II. Le sac anal. J Ultrastruct Res 37:335–350

    Google Scholar 

  • Ohmichi T, Saito R, Matsubara K, Terazawa K, Tasaka S, Ogura Y (1986) The microvascular architecture of the vestibule and the endolymphatic duct and sac of the rat in vascular corrosion casts. Scanning Electron Microsc 4:1445–1449

    Google Scholar 

  • Portmann G (1919) Recherches sur le sac et le canal endolymphatiques: sac et canal endolymphatiques du cobaye. C R Seances Soc Biol Fil 82:1384–1387

    Google Scholar 

  • Rask-Andersen H (1979) The vascular supply of the endolymphatic sac. Acta Otolaryngol (Stockh) 88:315–327

    Google Scholar 

  • Rask-Andersen H, Stahle J (1979) Lymphocyte-macrophage activity in the endolymphatic sac. An ultrastructural study of the rugose endolymphatic sac in the guinea pig. ORL J Otorhinolaryngol Relat Spec 41:177–192

    Google Scholar 

  • Rask-Andersen H, Stahle J (1980) Immunodefence of the inner ear? Lymphocyte-macrophage interaction in the endolymphatic sac. Acta Otolaryngol (Stockh) 89:283–294

    Google Scholar 

  • Rask-Andersen H, Bredberg G, Stahle J (1981) Structure and function of the endolymphatic duct. In: Vosteen KH, Schuknecht H, Pfaltz CR et al. (eds) Menière's disease. Thieme, New York, pp 99–109

    Google Scholar 

  • Siebenmann F (1919) Anatomische Untersuchungen über den Saccus und Ductus endolymphaticus beim Menschen. Passow u Schäfer Beitr Anat Ohres 13:59–64

    Google Scholar 

  • Silverstein H (1966) Biochemical studies of the inner ear fluids in the cat. Ann Otol 75:48–63

    Google Scholar 

  • Staubesand J, Andres KH (1953) Graphische Rekonstruktion zur räumlichen Darstellung präterminaler Gefäße und intravasaler Besonderheiten. Mikroskopie 8:111–120

    Google Scholar 

  • Streeter GL (1916) The vascular drainage of the endolymphatic sac and its topographic relation to the transverse sinus in the human embryo. Am J Anat 19:67–89

    Google Scholar 

  • Takumida M, Bagger-Sjöbäck D, Rask-Andersen H (1988) The basement membrane and associated structures in the murine endolymphatic sac. Arch Otorhinolaryngol 245:266–272

    Google Scholar 

  • Teryama Y, Shige E, Sakamoto T (1973) Distribution and origin of adrenergic nerve fibers in the vestibular apparatus and their arterial supply in the guinea pig. Acta Otolaryngol (Stockh) 76:244–253

    Google Scholar 

  • Tsujikawa S, Yamashita T, Amano H, Kumazawa T, Vosteen KH (1992) Acidity in the endolymphatic sac fluid of guinea pigs. ORL J Otorhinolaryngol Relat Spec 54:198–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlmann, A., von Düring, M. The endolymphatic duct and sac of the rat: a histological, ultrastructural, and immunocytochemical investigation. Cell Tissue Res 282, 277–289 (1995). https://doi.org/10.1007/BF00319118

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319118

Key words

Navigation