Skip to main content
Log in

The SNQ3 gene of Saccharomyces cerevisiae confers hyper-resistance to several functionally unrelated chemicals

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

A multi-copy plasmid containing the SNQ3 gene confers hyper-resistance to 4-nitroquinoline-N-oxide (4NQO), Trenimon, MNNG, cycloheximide, and to sulfometuron methyl in yeast transformants. Restriction analysis, subcloning, and DNA sequencing revealed an open reading frame of 1950 bp on the SNQ3-containing insert DNA. Gene disruption and transplacement into chromosomal DNA yielded 4NQO-sensitive null mutants which were also more sensitive than the wild-type to Trenimon, cycloheximide, sulfometuron methyl, and MNNG. Hydropathic analysis showed that the SNQ3-encoded protein is most likely not membrane-bound, while the codon bias index points to low expression of the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1988) Current protocols in molecular biology, vols 1 and 2. Wiley Interscience, New York

    Google Scholar 

  • Balzi E, Chen W, Ulaszewski S, Capieaux E, Goffeau A (1987) J Biol Chem 262: 16871–16879

    Google Scholar 

  • Bennetzen JL, Hall BD (1982) J Biol Chem 257: 3026–3031

    Google Scholar 

  • Birnboim HG, Doly J (1979) Nucleic Acids Res 7: 1513–1523

    Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) J Mol Biol 41: 459–472

    Google Scholar 

  • Brendel M, Mack M, Gömpel-Klein P, Haase E (1990) Dechema Biotechnol Conf 3: 287–290

    Google Scholar 

  • Carlson M, Botstein D (1982) Cell 28: 145–154

    Google Scholar 

  • Chaleff RS, Mauvais CJ (1984) Science 224: 1443–1444

    Google Scholar 

  • Chen C, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB (1986) Cell 47:381–389

    Google Scholar 

  • Dagert M, Ehrlich SD (1979) Gene 6: 23–28

    Google Scholar 

  • Del Sal G, Manfioletti G, Schneider C (1988) Nucleic Acids Res 16: 9878

    Google Scholar 

  • Endicott AE, Ling V (1989) Annu Rev Biochem 58: 137–171

    Google Scholar 

  • Falco SC, Dumas KS (1985) Genetics 109: 21–35

    Google Scholar 

  • Fleer R, Brendel M (1979) Mol Gen Genet 176: 41–52

    Google Scholar 

  • Gerlach JH, Endicott JA, Juranka PF, Henderson G, Sarangi F, Deuchars KL, Ling V (1986) Nature 324: 485–489

    Google Scholar 

  • Gömpel-Klein P, Brendel M (1990) Curr Genet 18: 93–96

    Google Scholar 

  • Gömpel-Klein P, Mack M, Brendel M (1989) Curr Genet 16: 65–74

    Google Scholar 

  • Gros P, Croop J, Housman D (1986a) Cell 47: 371–380

    Google Scholar 

  • Gros P, Neriah YB, Croop JM, Housman DE (1986b) Nature 1323: 728–731

    Google Scholar 

  • Haase E (1990) Doctoral Thesis, FB Biologie der J. W. Goethe-Universität, Frankfurt am Main, Federal Republic of Germany

  • Haase F, Riehl D, Mack M, Brendel M (1989) Mol Gen Genet 218: 64–71

    Google Scholar 

  • Hammond JR, Johnstone RM, Gros P (1989) Cancer Res 49: 3867–3871

    Google Scholar 

  • Henikoff S (1984) Gene 28: 351–359

    Google Scholar 

  • Henikoff S (1987) Methods Enzymol 15: 156–165

    Google Scholar 

  • Huisman O, Raymond W, Froehlich KU, Errada P, Kleckner N, Botstein D, Hoyt MA (1987) Genetics 116: 191–199

    Google Scholar 

  • Käppeli O (1986) Microbiol Rev 50: 244–258

    Google Scholar 

  • Ito H, Fukuda J, Murata K, Kimura A (1983) J Bacteriol 153: 163–168

    Google Scholar 

  • Kanazawa S, Driscoll M, Struhl K (1988) Mol Cell Biol 8: 664–673

    Google Scholar 

  • Kyte J, Doolittle RF (1982) J Mol Biol 157: 105–132

    Google Scholar 

  • Leppert G, McDevitt R, Falco SC, VanDyk TK, Ficke MB, Golin J (1990) Genetics 125: 13–20

    Google Scholar 

  • Mack M, Gömpel-Klein P, Haase E, Hietkamp J, Ruhland A, Brendel M (1988) Mol Gen Genet 211: 260–265

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • McGrath JP, Varshavsky A (1989) Nature 340: 400–404

    Google Scholar 

  • Meister A, Anderson ME (1983) Annu Rev Biochem 52: 711–760

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Nebert DW (1987) Annu Rev Biochem 56: 945–993

    Google Scholar 

  • Pickett CB (1989) Annu Rev Biochem 58: 743–764

    Google Scholar 

  • Rank GH (1986) Can J Genet Cytol 28: 852–855

    Google Scholar 

  • Riordan JR, Deuchars K, Kartner N, Alon N, Trent J, Ling V (1985) Nature 316: 817–819

    Google Scholar 

  • Rodriguez RL, Tait RC (1983) Recombinant DNA-techniques (an introduction). Addison-Wesley, London

    Google Scholar 

  • Roninson IB, Abelson HT, Housman DE, Howell N, Varshavsky A (1984) Nature 309:626–628

    Google Scholar 

  • Rothstein RJ (1983) Methods Enzymol 101: 202–209

    Google Scholar 

  • Ruhland AR, Brendel M (1979) Genetics 92: 83–97

    Google Scholar 

  • Ruhland AR, Haase E, Siede W, Brendel M (1981) Mol Gen Genet 181: 346–351

    Google Scholar 

  • Ruhland AR, Brendel M, Haynes RH (1986) Curr Genet 11: 211–215

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74: 5463–5467

    Google Scholar 

  • Saunders GW, Rank CH (1982) Can J Genet Cytol 24: 493–503

    Google Scholar 

  • Siede W (1926) Doctoral Thesis, FB Biologie der J. W. Goethe-Universität, Frankfurt am Main, Federal Republic of Germany

  • Subik J, Ulaszewski S, Goffeau A (1986) Curr Genet 10: 665–670

    Google Scholar 

  • Sugimura T, Okabe K, Endo H (1965) Gann 58: 489–501

    Google Scholar 

  • Tada, M (1981) In: Sugimura T (ed), Carcinogenesis vol. 6. Raven Press, New York, pp 25–45

    Google Scholar 

  • Tada M, Tada M (1975) Nature 255: 510–512

    Google Scholar 

  • Tautz D, Renz M (1983) Anal Biochem 132: 114–119

    Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) EMBO J 1: 945–951

    Google Scholar 

  • Way JC, Davis MA, Morisato D, Roberts DE, Kleckner N (1984) Gene 32: 369–379

    Google Scholar 

  • Wehner E, Seelmann K, Brendel M (1991) Mol Gen Genet (submitted)

  • Zaret KS, Sherman F (1982) Cell 28: 563–573

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Wolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertle, K., Haase, E. & Brendel, M. The SNQ3 gene of Saccharomyces cerevisiae confers hyper-resistance to several functionally unrelated chemicals. Curr Genet 19, 429–433 (1991). https://doi.org/10.1007/BF00312733

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312733

Key words

Navigation