Skip to main content
Log in

Early stages of chick somite development

  • Review Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

We report on the formation and early differentiation of the somites in the avian embryo. The somites are derived from the mesoderm which, in the body (excluding the head), is subdivided into four compartments: the axial, paraxial, intermediate and lateral plate mesoderm. Somites develop from the paraxial mesoderm and constitute the segmental pattern of the body. They are formed in pairs by epithelialization, first at the cranial end of the paraxial mesoderm, proceeding caudally, while new mesenchyme cells enter the paraxial mesoderm as a consequence of gastrulation. After their formation, which depends upon cell-cell and cell-matrix interactions, the somites impose segmental pattern upon peripheral nerves and vascular primordia. The newly formed somite consists of an epithelial ball of columnar cells enveloping mesenchymal cells within a central cavity, the somitocoel. Each somite is surrounded by extracellular matrix material connecting the somite with adjacent structures. The competence to form skeletal muscle is a unique property of the somites and becomes realized during compartmentalization, under control of signals emanating from surrounding tissues. Compartmentalization is accompanied by altered patterns of expression of Pax genes within the somite. These are believed to be involved in the specification of somite cell lineages. Somites are also regionally specified, giving rise to particular skeletal structures at different axial levels. This axial specification appears to be reflected in Hox gene expression. MyoD is first expressed in the dorsomedial quadrant of the still epithelial somite whose cells are not yet definitely committed. During early maturation, the ventral wall of the somite undergoes an epithelio-mesenchymal transition forming the sclerotome. The sclerotome later becomes subdivided into rostral and caudal halves which are separated laterally by von Ebner's fissure. The lateral part of the caudal half of the sclerotome mainly forms the ribs, neural arches and pedicles of vertebrae, whereas within the lateral part of the rostral half the spinal nerve develops. The medially migrating sclerotomal cells form the peri-notochordal sheath, and later give rise to the vertebral bodies and intervertebral discs. The somitocoel cells also contribute to the sclerotome. The dorsal half of the somite remains epithelial and is referred to as the dermomyotome because it gives rise to the dermis of the back and the skeletal musculature. The cells located within the lateral half of the dermomyotome are the precursors of the muscles of the hypaxial domain of the body, whereas those in the medial half are precursors of the epaxial (back) muscles. Single epithelial cells at the cranio-medial edge of the dermomyotome elongate in a caudal direction, beneath the dermomyotome, and become anchored at its caudal margin. These post-mitotic and muscle protein-expressing cells form the myotome. At limb levels, the precursors of hypaxial muscles undergo an epithelio-mesenchymal transition and migrate into the somatic mesoderm, where they replicate and later differentiate. These cells express the Pax-3 gene prior to, during and after this migration. All compartments of the somite contribute endothelial cells to the formation of vascular primordia. These cells, unlike all other cells of the somite, occasionally cross the midline of the developing embryo. We also suggest a method for staging somites according to their developmental age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aoyama H (1993) Developmental plasticity of the prospective dermatome and the prospective sclerotome region of an avian somite. Dev Growth Differ 35:507–519

    Google Scholar 

  • Aoyama H, Asamoto K (1988) Determination of somite cells: independence of cell differentiation and morphogenesis. Development 104:15–28

    Google Scholar 

  • Avery G, Chow M, Holtzer H (1956) An experimental analysis of the development of the spinal column. V. Reactivity of chick somites. J Exp Zool 132:409–425

    Google Scholar 

  • Bagnall KM, Higgins S, Sanders EJ (1988) The contribution made by a single somite to the vertebral column: experimental evidence in support for resegmentation using the chick-quail chimaera model. Development 103:69–85

    Google Scholar 

  • Bagnall KM, Higgins S, Sanders EJ (1989) The contribution made by a single somite to tissues within a body segment and assessment of their integration with similar cells from adjacent segments. Development 107:931–943

    Google Scholar 

  • Bagnall KM, Sanders EJ, Berdan RC (1992) Communication compartments in the axial mesoderm of the chick embryo. Anat Embryol 186:195–204

    Google Scholar 

  • Bellairs R (1963) The development of the somites in the chick embryo. J Embryol Exp Morphol 11:697–714

    Google Scholar 

  • Bellairs R (1979) The mechanism of somite segmentation in the chick embryo. J Embryol Exp Morphol 51:227–243

    Google Scholar 

  • Bellairs R, Curtis ASG, Sanders EJ(1978) Cell adhesiveness and embryonic differentiation. J Embryol Exp Morphol 55:93–198

    Google Scholar 

  • Beloussov LV, Maumidi JJ (1983) Cell contacts and rearrangements preceding somitogenesis in chick embryo. Cell Differ 12:191–204

    Google Scholar 

  • Blechschmidt E (1961) Die vorgeburtlichen Entwicklungsstadien des Menschen. Karger, Basel

    Google Scholar 

  • Bober E, Franz T, Arnold H-H, Grass P, Tremblay P (1994) Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 120:603–612

    Google Scholar 

  • Borman WH, Urlakis KJ Jr, Yorde DE (1994) Analysis of the in vivo myogenic status of chick somites by desmin expression in vitro. Dev Dyns 199:268–279

    Google Scholar 

  • Brand B, Christ B, Jacob HJ (1985) An experimental analysis of the developmental capacities of distal parts of avian leg buds. Am J Anat 173:321–340

    Google Scholar 

  • Brand-Saberi B, Ebensperger C, Wilting J, Balling R, Christ B (1993) The ventralizing effect of the notochord on somite differentiation in chick embryos. Anat Embryol 188:239–245

    Google Scholar 

  • Bronner-Fraser M (1986) Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1. Dev Biol 115:44–55

    Google Scholar 

  • Buffinger N, Stockdale FE (1994) Myogenic specification in somites: induction by axial structures. Development 120:1443–1452

    Google Scholar 

  • Cheney CM, Lash JW (1984) An increase in cell-cell adhesion in the chick segmental plate results in a meristic pattern. J Embryol Exp Morphol 79:1–10

    Google Scholar 

  • Chevallier A (1977) Origine des ceintures scapulaires et pelviennes chez l'embryon d'oiseau. J Embryol Exp Morphol 42:275–292

    Google Scholar 

  • Chevallier A, Kieny M, Mauger A (1977) Limb-somite relationship: origin of the limb musculature. J Embryol Exp Morphol 41:245–258

    Google Scholar 

  • Christ B (1975) Die Entwicklung der Körperwandmetamerie. Experimentelle Untersuchungen an Hühnerembryonen. Habilitationsschrift, Bochum

    Google Scholar 

  • Christ B, Jacob HJ (1980) Origin, distribution and determination of chick limb mesenchymal cells. In: Merker H-J, Nau H, Neubert D (eds) Teratology of the limb. de Gruyter, Berlin, pp 67–77

    Google Scholar 

  • Christ B, Wilting J (1992) From somites to vertebral column. Ann Anat 174:23–32

    Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1972) Experimentelle Untersuchungen zur Somitenentwicklung beim Hühnerembryo. Z Anat Entwicklungsgesch 138:82–97

    Google Scholar 

  • Christ B, Jacob M, Jacob HJ (1973) Weitere Befunde zur Differenzierung des achsennahen Mesoderms junger Hühnerembryonen. Anat Anz Ergänz-H. zum Bd 134:175–182

    Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1974a) Experimentelle Untersuchungen zur Entwicklung der Brustwand beim Hühnerembryo. Experientia 30:1449–1451

    Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1974b) Über den Ursprung der Flügelmuskulatur. Experientia 30:1446–1448

    Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1977) Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol 150:171–186

    Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1978) On the formation of the myotomes in avian embryos. An experimental and scanning electron microscopic study. Experientia 34:514–516

    Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1979a) Differentiating abilities of avian somatopleural mesoderm. Experientia 35:1376–1378

    Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1979b) Über Gestaltungsfunktionen der Somiten bei der Entwicklung der Körperwand von Hühnerembryonen. Verh Anat Ges 73:537–549

    Google Scholar 

  • Christ B, Verbout AJ, Jacob HJ (1982a) Zur Entwicklung der definitiven Körperwandmetamerie. Untersuchungen an Vogel- und Schafsembryonen. Verh Anat Ges 76:473–475

    Google Scholar 

  • Christ B, Jacob HJ, Jacob M, Wachtier F (1982b) On the origin, distribution and determination of avian limb mesenchymal cells. In: Mac Cabe JA (ed) Proceedings of the IIIrd International Conference of Limb Morphogenesis and Regeneration. Part B:281–291 Liss, New York

    Google Scholar 

  • Christ B, Jacob M, Jacob HJ (1983) On the origin and development of the ventro-lateral trunk musculature in the avian embryo. An experimental and ultrastructural study. Anat Embryol 166:87–101

    Google Scholar 

  • Christ B, Jacob M, Jacob HJ, Brand B, Wachtler F, (1986) Myogenesis: a problem of cell distribution and cell interactions. In: Bellairs R, Ede DA, Lash JW (eds) Somites in developing embryos. NATO ASI Series 118:261–276

  • Christ B, Jacob HJ, Seifert R (1988) Über die Entwicklung der zervikookzipitalen Übergangsregion. In: Hohmann D, Kügelgen B, Liebig K (eds) Neuroorthopädie 4. Springer, Berlin Heidleberg New York, pp 13–22

    Google Scholar 

  • Christ B, Brand-Saberi B, Jacob HJ, Jacob M, Seifert R (1990) Principles of early muscle development. In: Le Douarin N, Dieterlen-Lièvre F, Smith J (eds) The avian model in developmental biology: from organism to genes. CNRS, Paris, pp 139–151

    Google Scholar 

  • Christ B, Brand-Saberi B, Grim M, Wilting J (1992) Local signalling in dermomyotomal cell type specification. Anat Embryol 186:505–510

    Google Scholar 

  • Crossin KL, Hoffman S, Grumet M, Thiery J-P, Edelman GM (1986) Site-restricted expression of cytotactin during development of the chicken embryo. J Cell Biol 102:1917–1930

    Google Scholar 

  • Couly GF, Colley PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429

    Google Scholar 

  • Duband J-L, Dufour S, Hatta K, Takeichi M, Edelman GM, Thiery JP (1987) Adhesion molecules during somitogenesis in the avian embryo. J Cell Biol 104:1361–1374

    Google Scholar 

  • Ebensperger C, Wilting J, Brand-Saberi B, Mitzutani Y, Christ B, Balling R, Koseki H (1994) Pax-1, a regulator of sclerotome development is induced by notochord and floorplate signals in avian embryos. Anat Embryol (in press)

  • Ebner V von (1885) Urwirbel und Neugliederung der Wirbelsäule. Sitzungsber Akad Wiss Wien III, 197:194–206

    Google Scholar 

  • Echelard Y, Epstein DP, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signalling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430

    Google Scholar 

  • Eichmann A, Marcelle C, Brèant C, Le Douarin NM (1993) Two molecules related to the VEGF receptor are expressed in early endothelial cells during avian embryonic development. Mech Dev 42:33–48

    Google Scholar 

  • Ellison ML, Ambrose EJ, Easty GC (1969a) Chondrogenesis in chick embryo somites in vitro. J Embryol Exp Morphol 21:331–340

    Google Scholar 

  • Ellison ML, Ambrose EJ, Easty GC (1969b) Myogenesis in chick embryo somites in vitro. J Embryol Exp Morphol 21:341–346

    Google Scholar 

  • Fischel A (1895) Zur Entwicklung der ventralen Rumpf- und Extremitätenmuskulatur der Vögel und Säugethiere. Morphol Jb 23:544–561

    Google Scholar 

  • Franz T, Kothary R, Surani MÄH, Halata Z, Grim M (1993) The splotch mutation interferes with muscle development in the limbs. Anat Embryol 187:153–160

    Google Scholar 

  • George EL, Georges Labonesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1075–1091

    Google Scholar 

  • George-Weinstein M, Gerhart J-V, Foti GJ, Lash JW (1994) Maturation of myogenic and chondrogene cells in the presomitic mesoderm of the chick embryo. Exp Cell Res 211:263–274

    Google Scholar 

  • Goulding MD, Lumsden A, Gruss P (1993) Signals from the notochord and floor plate regulates the region-specific expression of two Pax genes in the developing spinal cord. Development 117:1001–1016

    Google Scholar 

  • Goulding M, Lumsden A, Paquette AJ (1994) Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 120:957–971

    Google Scholar 

  • Grim M (1970) Differentiation of myoblasts and the relationship between somites and the wing bud of chick embryos. Z Anat Entwicklungsgesch 132:260–271

    Google Scholar 

  • Hall BK (1977) Chondrogenesis of the somitic mesoderm. Adv Anat Embryol Cell Biol 53:1–50

    Google Scholar 

  • Hamilton HL (1952) Lillie's development of the chick. An introduction to embryology. Holt, New York

    Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Google Scholar 

  • Holtzer H (1952) An experimental analysis of the development of the spinal column II The dispensability of the notochord. J Exp Zool 121:573–591

    Google Scholar 

  • Huang R, Zhi Q, Wilting J, Christ B (1994) The fate of somitocoele cells in avian embryos. Anat Embryol 190:243–250

    Google Scholar 

  • Jacob HJ, Christ B, Grim M (1983) Problems of muscle pattern formation and of neuromuscular relations in avian limb development. In: Kelley RO, Goetinck PF, Mac Cabe JA (eds) Limb development and regeneration. Liss, New York, pp 333–341

    Google Scholar 

  • Jacob M, Jacob HJ, Christ B (1975a) The early differentiation of the perinotochordal connective tissue. A scanning and transmission electron microscopic study on chick embryos. Experientia 31:1083–1086

    Google Scholar 

  • Jacob M, Christ B, Jacob HJ (1975b) Über die regionale Determination des paraxialen Mesoderms junger Hühnerembryonen. Verh Anat Ges 69:263–269

    Google Scholar 

  • Jacob M, Christ B, Jacob HJ (1978) On the migration of myogenic stem cells into the prospective wing region of chick embryos. A scanning and transmission electron microscopic study. Anat Embryol 153:179–193

    Google Scholar 

  • Jacob M, Christ B, Jacob HJ (1979) The migration of myogenic stem cells from the somites into the leg region of avian embryos. Anat Embryol 157:291–309

    Google Scholar 

  • Jacob M, Jacob HJ, Wachtler F, Christ B (1984) Ontogeny of avian extrinsic ocular muscles. I A light- and electronmicroscopic study. Cell Tissue Res 237:549–557

    Google Scholar 

  • Jacob M, Christ B, Jacob HJ, Poelmann RE (1991) The role of fibronectin and laminin in development and migration of the avian Wolffian duct with reference to somitogenesis. Anat Embryol 183:385–395

    Google Scholar 

  • Jacobson AG (1988) Somitomeres: mesodermal segments of vertebrate embryos. Development 104[Suppl]:209–220

    Google Scholar 

  • Kaehn V, Jacob HJ, Christ B, Hinrichsen K, Poelmann RE (1988) The onset of myotome formation in the chick. Anat Embryol 177:191–201

    Google Scholar 

  • Kenny-Mobbs T, Thorogood P (1987) Anatomy of differentiation in avian brachial somites and the influence of adjacent tissues. Development 100:449–462

    Google Scholar 

  • Kessel M (1991) Molecular coding of axial positions by Hox genes. Semin Dev Biol 2:367–373

    Google Scholar 

  • Kessel M (1992) Respecification of vertebral indentities by retinoic acid. Development 115:487–501

    Google Scholar 

  • Kessel M, Gruss P (1991) Homeotic transformations of murine vertebras and concomitant alternation of Hox codes induced by retinoic acid. Cell 67:89–104

    Google Scholar 

  • Kessel M, Balling R, Gruss P (1990) Variations of cervical vertebrae after expression of a Hox-1.1 transgene in mice. Cell 61:301–308

    Google Scholar 

  • Keynes RJ, Stern CD (1984) Segmentation in the vertebrate nervous system. Nature 310:786–789

    Google Scholar 

  • Keynes RJ, Stern CD (1988) Mechanism of vertebrate segmentation. Development 103:413–429

    Google Scholar 

  • Kieny M, Chevallier A (1980) Existe-t-il une relation spatiale entre le niveau d'origine du cellules somitiques myogènes et leur localisation terminale dans l'aile. Arch Anat Micr Morphol Exp 69:35

    Google Scholar 

  • Kieny M, Manger A, Sengel P (1972) Early regionalization of the somite mesoderm as studied by the development of the axial skeleton of the chick embryo. Dev Biol 28:142–161

    Google Scholar 

  • Kirschhofer v K, Grim M, Christ B, Wachtler F (1994) Emergence of myogenic and endothelial cell lineages in avian embryos. Dev Biol 163:270–278

    Google Scholar 

  • Koseki H, Wallin J, Wilting J, Mitzutani Y, Kispert A, Ebensperger C, Herrmann BO, Christ B, Balling R, (1993) A role for Pax-1 as a mediator of notochordal signals during the dorsoventral specification of vertebrae. Development 119:649–660

    Google Scholar 

  • Krenn V, Gorka P, Wachtler F, Christ B, Jacob HJ (1988) On the origin of cells determined to form skeletal muscle in avian embryos. Anat Embryol 179:49–54

    Google Scholar 

  • Lance-Jones C (1988) The somitic level of origin of chick hind limb muscles. Dev Biol 126:394–407

    Google Scholar 

  • Langman J, Nelson GR (1968) A radioautograph study of the development of the somite in the chick embryo. J Embryol Exp Morphol 19:217–226

    Google Scholar 

  • Lash JW (1963) Studies on the ability of embryonic mesonephros expiants to form cartilage. Dev Biol 6:219–232

    Google Scholar 

  • Lash JW, Holtzer S, Holtzer H (1957) An experimental analysis of the development of the spinal column V Aspects of cartilage induction. Exp Cell Res 13:292–203

    Google Scholar 

  • Lash JW, Seitz AW, Cheney CM, Ostrovsky D (1984) On the role of fibronectin during the compaction stage of somitogenesis in the chick embryo. J Exp Zool 232:197–206

    Google Scholar 

  • Lash JW, Ostrovsky D, Mittal B, Sauger JW (1985) Alpha actinin distribution and extracellular matrix products during somitogenesis in the chick embryo. J Exp Zool 232:197–206

    Google Scholar 

  • Le Douarin NM (1969) Particularités du noyaux interphasique chez la caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme “marquage biologique” dans les recherches sur les interactions tissulaires et les migrations cellulaires au cours de l'ontogenèse. Bull Biol Fr Belg 103:435–452

    Google Scholar 

  • Le Douarin NM (1982) The neural crest. Cambridge University Press, Cambridge

    Google Scholar 

  • Lipton BH, Jacobson AG (1974) Analysis of normal somite development. Dev Biol 38:73–90

    Google Scholar 

  • Love JM, Tuan RS (1993) Pair-rule gene expression in the somitic stage chick embryo: association with somite segmentation and border formation. Differentiation 54:73–83

    Google Scholar 

  • Mackie EJ, Tucker RP, Halfter W, Chiquet-Ehrishmann R, Epperlein H-H (1988) The distribution of tenascin coincides with pathway of neural crest cell migration. Development 102:237–256

    Google Scholar 

  • Mauger A, Kieny M (1980) Migratory and organogenetic capacities of muscle cells in bird embryos. Wilhelm Roux' Arch Entwicklungsmech Org 189:123–134

    Google Scholar 

  • Meier S (1979) Development of the chick mesoblast: formation of embryonic axis and establishment of the metameric pattern. Dev Biol 73:24–45

    Google Scholar 

  • Menkes B, Sandor S (1977) Somitogenesis: regulation potencies, sequence determination and primordial interactions. In: Ede DA, Hinchliffe JR, Balls M (eds) Vertebrate limb and somite morphogenesis. Cambridge University Press, Cambridge, pp 405–420

    Google Scholar 

  • Mestres P, Hinrichsen K (1976) Zur Histogenese der Somiten beim Hühnchen. J Embryol Exp Morphol 36:669–693

    Google Scholar 

  • Nicolet G (1970) Analyse autoradiographique de la localisation de différentes ébauches présomptives dans la ligne primitive de l'embryon de poulet. J Embryol Exp Morphol 23:79–108

    Google Scholar 

  • Noden DM (1991) Origins and patterning of avian outflow tract endocardium. Development 111:867–876

    Google Scholar 

  • Norris WE, Stern CD, Keynes RJ (1989) Molecular differences between the rostral and caudal halves of the sclerotome in the chick embryo. Development 105:541–548

    Google Scholar 

  • Oakley RA, Tosney KW (1991) Peanut agglutinin and chondroitin-6-sulphate are molecular markers for tissues that act as barriers to axon advance in the avian embryo. Dev Biol 147:187–206

    Google Scholar 

  • O'Hare MJ (1972a) Differentiation of chick embryo somites in chorioallantoic culture. J Embryol Exp Morphol 27:215–228

    Google Scholar 

  • O'Hare MJ (1972b) Chondrogenesis in chick embryo somites grafted with adjacent and heterologous tissues. J Embryol Exp Morphol 27:229–234

    Google Scholar 

  • O'Hare MJ (1972c) Aspects of spinal cord induction of chondrogenesis in chick embryo somites. J Embryol Exp Morphol 27:235–242

    Google Scholar 

  • Ooi VEC, Sanders EJ, Bellairs R (1986) The contribution of the primitive streak to the somites in the avian embryo. J Embryol Exp Morphol 92:193–206

    Google Scholar 

  • Ordahl CP (1993) Myogenic lineages within the developing somite. In: Molecular basis of morphogenesis. Liss, New York, pp 165–176

    Google Scholar 

  • Ordahl CP, Le Douarin N (1992) Two myogenic lineages within the developing somite. Development 114:339–353

    Google Scholar 

  • Ostrovsky D, Sauger JW, Lash JW (1983) Light microscopic observation on actin distribution during morphogenetic movements in the chick embryo. J Embryol Exp Morphol 78:23–32

    Google Scholar 

  • Ott M, Bober E, Lyons G, Arnold H, Buckingham M (1991) Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111:1097–1107

    Google Scholar 

  • Packard DS, Jacobson AG (1976) The influence of axial structures on chick somite formation. Dev Biol 53:36–48

    Google Scholar 

  • Packard DS Jr (1978) Chick somite determination: the role of factors in young somites and the segmental plate. J Exp Zool 203-295-306

    Google Scholar 

  • Pasteels J (1937) Etudes sur la gastrulation du vertébrés meroblastiques. III. Oiseaux. IV. Conclusions générales. Arch Biol 48:381–488

    Google Scholar 

  • Pourqié O, Coltey M, Teillet M-A, Ordahl C, Le Douarin NM, (1993) Control of dorsoventral patterning of somitic derivatives by notochord and floor plate. Proc Natl Acad Sci USA 90:5242–5246

    Google Scholar 

  • Pownall ME, Emerson CP (1992) Sequential activation of myogenic regulatory genes during somite morphogenesis in quail embryos. Dev Biol 151:67–79

    Google Scholar 

  • Ranscht B, Bronner-Fraser M (1991) T-cadherin expression alternatives with migrating neural crest cells in the trunk of the avian embryo. Development 111:15–22

    Google Scholar 

  • Remak R (1855) Untersuchungen über die Entwicklung der Wirbelthiere. Reimer, Berlin

    Google Scholar 

  • Revel J-P, Yip P, Chang LL (1973) Cell junctions in the early chick embryo — a freeze-etch study. Dev Biol 35:302–317

    Google Scholar 

  • Rickmann M, Fawcett J, Keynes RJ (1985) The migration of neural crest cells and the growth of motor axons through the ventral half of the chick somite. J Embryol Exp Morphol 90:437–453

    Google Scholar 

  • Riddle R, Johnson RL, Laufer E, Tabin C (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75:1401–1416

    Google Scholar 

  • Rosenquist GC (1966) A radioautographic study of labeled grafts in the chick blastoderm. Development from primitive-streak stages to stage 12. Cam Contrib Embryol No 262, 38:21–110

    Google Scholar 

  • Schoenwolf GC, Garcia-Martinez V, Dias MS (1992) Mesoderm movement and fate during avian gastrulation and neurulation. Dev Dyn 193:235–248

    Google Scholar 

  • Schramm C, Solursh M (1990) The formation of premuscle masses during chick wing bud development. Anat Embryol 182:235–247

    Google Scholar 

  • Selleck MA, Stern CD (1991) Fate mapping and cell lineage analysis of Hensen's node in the chick embryo. Development 112:615–626

    Google Scholar 

  • Solursh M, Fischer M, Meier S, Singley CT (1979) The role of extracellular matrix in the formation of the sclerotome. J Embryol Exp Morphol 54:75–98

    Google Scholar 

  • Solursh M, Drake C, Meier S (1987) The migration of myogenic cells from the somites at the wing level in avian embryos. Dev Biol 121:389–396

    Google Scholar 

  • Spratt NT (1955) Analysis of the organizer center in the early chick embryo. I. Localization of the prospective notochord and somite cells. J Exp Zool 128:121–164

    Google Scholar 

  • Stern C, Sisodaya S, Keynes R (1986) Interactions between neurites and somite cells: inhibition and stimulation of nerve growth in the chick embryo. J Embryol Exp Morphol 91:209–226

    Google Scholar 

  • Summerbell D, Coetzee H, Hornbruch A (1986) A unique population of non-dividing cells in the somites. In: Bellairs R, Ede DA, Lash JW (eds) Somites in developing embryos. NATO ASI series 118, Plenum Press, New York, pp 119–134

    Google Scholar 

  • Tam PPL, Trainor PA (1994) Specification and segmentation of the paraxial mesoderm. Anat Embryol 189:275–305

    Google Scholar 

  • Tan S-S, Crossin KL, Hoffman H, Edelman GM (1987) Asymmetric expression in somites of cytotactin and proteoglycan ligand is correlated with neural crest cell distribution. Proc Natl Acad Sci USA 84:7977–7981

    Google Scholar 

  • Theiler K (1972) The house mouse. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Thiery J-P, Duband JL, Delourée A (1982) Pathways and mechanisms of avian trunk neural crest cell migration and localization. Dev Biol 93:324–343

    Google Scholar 

  • Tosney K (1978) The early migration of neural crest cells in the trunk region of the avian embryo: an electron microscopic study. Dev Biol 62:317–333

    Google Scholar 

  • Tosney KW, Dehnbostel DB, Erickson CA (1994) Neural crest cells prefer the myotome's basal lamina over the sclerotome as a substratum. Dev Biol 163:389–406

    Google Scholar 

  • Veini M, Bellairs R (1991) Early mesoderm differentiation in the chick embryo. Anat Embryol 183:143–149

    Google Scholar 

  • Verbout AJ (1985) The development of the vertebral column. Adv Anat Embryol Cell Biol 89:1–122

    Google Scholar 

  • Wachtler F, Christ B (1992) The basic embryology of skeletal muscle formation in vertebrates: the avian model. Semin Dev Biol 3:217–227

    Google Scholar 

  • Wachtler F, Christ B, Jacob HJ (1981) On the determination of mesodermal tissues in the avian embryonic wing bud. Anat Embryol 161:283–289

    Google Scholar 

  • Wachtler F, Christ B, Jacob HJ (1982) Grafting experiments on determination and migratory behaviour of presomitic, somitic and somatopleural cells in avian embryos. Anat Embryol 164:369–378

    Google Scholar 

  • Wachtler F, Jacob HJ, Jacob M, Christ B (1984) The extrinsic ocular muscles in birds are derived from the prechordal plate. Naturwissenschaften 71:379

    Google Scholar 

  • Watterson RL, Fowler J, Fowler BJ (1954) The role of the neural tube and notochord in development of the axial skeleton of the chick. Am J Anat 95:337–399

    Google Scholar 

  • Williams BA, Ordahl CP (1994) Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 120:785–796

    Google Scholar 

  • Williams LW (1910) The somites of the chick. Am J Anat 11:55–100

    Google Scholar 

  • Wilting J, Brand-Saberi B, Huang R, Zhi Q, Königes G, Kühlewein M, Ordahl CP, Christ B (1994) The angiogenic potential of the avian somite. Dev Dyn (in press)

  • Wong GK, Bagnall KM, Bardam RC (1993) The immediate fate of cells in the epithelial somite of the chick embryo. Anat Embryol 188:441–447

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christ, B., Ordahl, C.P. Early stages of chick somite development. Anat Embryol 191, 381–396 (1995). https://doi.org/10.1007/BF00304424

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00304424

Key words

Navigation