Skip to main content
Log in

The evolution of agonistic behavior in amblyopsid fishes

  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Summary

Agonistic behavior observed in the Amblyopsidae was analyzed using Brillouin's diversity index. Agonistic behavior was not observed in Chologaster cornuta. Chologaster agassizi and Ambloypsis spelaea, the least cave adapted subterranean species in each subfamilial lineage, engaged in relatively intense, complex agonistic bouts. In contrast, the more highly cave adapted species, Typhlichthys subterraneus and Ambloypsis rosae, engaged in simpler, less intense bouts which were considerably shorter in length. Dominance appeared to be size related in C. agassizi and A. spelaea, dependent on prior residency in A. rosae and possibly a combination of size and prior residency in Typhlichthys. Regressive evolution resulting from reduced selective pressures is seen as the most probable explanation for the observed reduction in agonistic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Baerends GP, Baerends-Van Roon JM (1950) An introduction to the study of the ethology of cichlid fishes. Behaviour Suppl I:1–242

    Google Scholar 

  • Braddock JC (1949) The effects of prior residence upon the dominance in the fish Platypoecilus maculatus. Physiol Zool 22:161–169

    Google Scholar 

  • Chapman DW (1966) Food and space as regulators of salmonid populations in streams. Am Nat 100:345–357

    Google Scholar 

  • Chisar D, Drake RW (1975) Aggressive behavior in rainbow trout (Salmo gairdneri Richardson) of two ages. Behav Biol 13:425–431

    Google Scholar 

  • Copper JE, Kuehne RA (1974) Speoplatyrhinus poulsoni, a new genus and species of subterranean fish from Alabama. Copeia 1974:486–493

    Google Scholar 

  • Dill LM (1977) Aggressive distance in juvenile coho salmon (Oncorhynchus kisutch). Can J Zool 56:1441–1446

    Google Scholar 

  • Eigenmann CH (1909) Cave vertebrates of America, a study in degenerative evolution. Carnegie Inst Wash Publ 104:1–241

    Google Scholar 

  • Ewing AW (1975) Studies on the behavior of cyprinodont fish. II. The evolution of aggressive behavior in Old World rivulins. Behaviour 52:172–195

    Google Scholar 

  • Fernet DA, Smith JRF (1976) Agonistic behavior of captive goldeye (Hiodon celosoides). J Fish Res Board Can 33:695–702

    Google Scholar 

  • Gibson RM (1968) The agonistic behavior of juvenile Blennius pholis L. (Teleostei). Behaviour 30:192–217

    Google Scholar 

  • Greenburg B (1947) Some relations between territory, social hierarchy, and leadership in the green sunfish (Lepomis cyanellus). Physiol Zool 20:267–299

    Google Scholar 

  • Hill LG (1969) Feeding and food habits of the spring cavefish, Chologaster agassizi. Am Midl Nat 82:110–116

    Google Scholar 

  • Johnson LK, Hubbell SP (1974) Aggression and competition among stingless bees: Field studies. Ecology 55:120–127

    Google Scholar 

  • Keenleyside MHA, Yamamoto FT (1962) Territorial behaviour of juvenile atlantic salmon (Salmo salar L.). Behaviour 19:139–169

    Google Scholar 

  • Magnuson JJ (1962) An analysis of aggressive behaviour, growth, and competition for food and space in medaka (Oryzias latipes (Pisces, Cyprinodontidae)). Can J Zool 40:313–363

    Google Scholar 

  • Marler P (1956) Studies of fighting in chaffinches (3) proximity as a cause of aggression. Br J Anim Behav 4:23–30

    Google Scholar 

  • McMillian VE, Smith RJF (1974) Agonistic and reproductive behaviour of the fathead minnow (Pimephales promelas Rafinesque). Z Tierpsychol 34:25–58

    Google Scholar 

  • Parzefall J (1969) Zur vergleichenden Ethologie verschiedener Mollienesia-Arten einschließlich einer Höhlenform von M. sphenops. Behaviour 33:1–35

    Google Scholar 

  • Parzefall J (1974) Ruckbildung aggressiver Verhaltensweisen bei einer Höhlenform von Peocilia sphenops (Pisces, Poecilidae). Z. Tierpsychol 35:66–84

    Google Scholar 

  • Parzefall J, Durand J, Richard B (1981) Aggressive behaviour of the european cave salamander Proteus anguinus (Porteidae, Urodela). Proc Int Congr Speleol 8:415–419

    Google Scholar 

  • Peters H, Peters G, Parzefall J, Wilkens H (1973) Über degenerative und konstruktive Merkmale bei einer phylogenetisch jungen Höhlenform von Peocilia sphenops (Pisces, Peocilidae). Int Rev Ges Hydrobiol 58:417–436

    Google Scholar 

  • Pielou EC (1966) The measure of diversity in different types of biological collections. J Theor Biol 13:131–144

    Google Scholar 

  • Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 70:257–290

    Google Scholar 

  • Poulson TL (1969) Population size, density, and regulation in cave fishes. Proc Int Congr Speleol 4:189–192

    Google Scholar 

  • Poulson TL, White WB (1969) The cave environment. Science 196:971–981

    Google Scholar 

  • Swafford D, Branson BA, Sievert GA (1980) Genetic differentiation of cavefish populations (Amblyopsidae). Isozyme Bull 13:109–144

    Google Scholar 

  • Vandel A (1965) Biospeleology, the biology of cavernicolous animals. Pergamon Press, New York, p 524

    Google Scholar 

  • Weise JG (1957) The spring cave-fish, Chologaster papilliferus in Illinois. Ecology 38:196–204

    Google Scholar 

  • Woods LP, Inger RF (1957) The cave, spring, and swamp fishes of the family Amblyopsidae of central and eastern United States. Am Midl Nat 58:232–256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechler, D.L. The evolution of agonistic behavior in amblyopsid fishes. Behav Ecol Sociobiol 12, 35–42 (1983). https://doi.org/10.1007/BF00296930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00296930

Keywords

Navigation