Skip to main content
Log in

Threshold levels of cadmium for soil respiration and growth of spring wheat (Triticum aestivum L.), and difficulties with their determination

  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Summary

Inconsistent results were obtained from comparative studies on the impact of increasing Cd contamination in three soils on growth of spring-wheat plantlets and soil respiration. With identical soil Cd loads, plant growth was increasingly inhibited in the following sequence: Neutral sandy hortisol (pH 7.0) < phaeosem (pH 6.9) < acidic cambisol (pH 5.6), suggesting a strong dependence on pH. In contrast, oxidation of a glucose-glutamate mixture by these soils was increasingly inhibited in the sequence: Acidic cambisol < neutral sandy hortisol < phaeosem. Inhibition of plant growth was correlated with the extractability of Cd from soils by 0.1 M CaCl2. However, comparison of dose-response curves with dose-extractability and dose-uptake curves suggested the presence of a soil factor that modified plant uptake of available Cd. This factor, possibly the concentration of antagonistic cations, was apparently also active within the plants. The inconsistency in the responses of plant growth and of soil respiration with respect to the soil Cd load was ascribed to microbiological soil properties exceeding the importance of Cd availability. Relatively high in vitro sensitivity of prokaryotes and their biochemical interdependence together with relatively high diversities of streptomycetes and fungi were paralleled by a relatively strong inhibition of soil respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alef K, Kleiner D (1987) Applicability of arginine ammonification as indicator of microbial activity in different soils. Biol Fertil Soils 5:148–151

    Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley, New York

    Google Scholar 

  • Barkay T, Tripp SC, Olson BH (1985) Effect of metal-rich sewage sludge application on the bacterial communities of grasslands. Appl Environ Microbiol 49:333–337

    Google Scholar 

  • Beckett PHT, Davis RD (1977) Upper critical levels of toxic elements in plants. New Phytol 79:95–106

    Google Scholar 

  • Bisessar S (1982) Effect of heavy metals on microorganisms in soils near a secondary lead smelter. Water Air Soil Pollut 17:305–308

    Google Scholar 

  • Brookes PC, McGrath SP (1984) Effects of metal toxicity on the size of the soil microbial biomass. J Soil Sci 35:341–346

    Google Scholar 

  • Chang FH, Broadbent FE (1981) Influence of trace metals on carbon dioxide evolution from a yolo soil. Soil Sci 132:416–421

    Google Scholar 

  • Coughtrey PJ, Jones CH, Martin MH, Shales SW (1979) Litter accumulation in woodlands contaminated by Pb, Zn, Cd and Cu. Oecologia 39:51–60

    Google Scholar 

  • Debosz K, Babich H, Stotzky G (1985) Toxicity of lead to soil respiration: Mediation by clay minerals, humic acids, and compost. Bull Environ Contam Toxicol 35:517–524

    Google Scholar 

  • Doelman P, Haanstra L (1986) Short- and long-term effects of heavy metals on urease activity in soils. Biol Fertil Soils 2:213–218

    Google Scholar 

  • Gams W, Domsch KH (1967) Beiträge zur Anwendung der Bodenwaschtechnik für die Isolierung von Bodenpilzen. Arch Mikrobiol 58:134–144

    Google Scholar 

  • Haanstra L, Doelman P (1984) Glutamic acid decomposition as a sensitive measure of heavy metal pollution in soil. Soil Biol Biochem 16:595–600

    Google Scholar 

  • Klein H, Priebe A, Jäger HJ (1981) Grenzen der Belastbarkeit von Kulturpflanzen mit dem Schwermetall Cadmium. Angew Bot 55:295–308

    Google Scholar 

  • Muskett CJ, Jones MP (1981) Soil respiratory activity in relation to motor vehicle pollution. Water Air Soil Pollut 15:329–341

    Google Scholar 

  • Nordgren A, Bååth E, Söderström B (1983) Microfungi and microbial activity along a heavy metal gradient. Appl Environ Microbiol 45:1829–1837

    Google Scholar 

  • Odum EP (1980) Grundlagen der Ökologie. Thieme, Stuttgart New York

    Google Scholar 

  • Payne WJ (1970) Energy yields and growth of heterotrophs. Annu Rev Microbiol 24:17–52

    Google Scholar 

  • Pochon J, Tardieux P (1962) Techniques d'analyse en microbiologie du sol. La Tourelle, St-Mandé

    Google Scholar 

  • Reber H (1967) Vergleichende Untersuchungen zur Toxizität und Selektivität von Entseuchungsmitteln für Bodenmikroorganismen. Z Pflanzenkr Pflanzenschutz 74:414–426

    Google Scholar 

  • Sauerbeck D (1982) Welche Schwermetallgehalte in Pflanzen dürfen nicht überschritten werden, um Wachstumsbeeinträchtigungen zu vermeiden? Landwirtsch Forsch Sonderh 39:108–129

    Google Scholar 

  • Skujins J, Norstedt HÖ, Odén S (1986) Development of a sensitive method for the determination of low-level toxic contamination in soils. Swedish J Agric Res 16:113–118

    Google Scholar 

  • Stadelmann FX, Gupta SK, Rudaz A, Stoeckli Walter C (1982) Wechselbeziehungen zwischen Bodenmikroorganismen und Cadmium in Labor- und Gefäßversuchen. Landwirtsch Forsch Sonderh 39:384–393

    Google Scholar 

  • Stadelmann FX, Gupta SK, Rudaz A, Santschi-Fuhrimann E (1984) Die Schwermetallbelastung des Bodens als Gefahr für die Bodenmikroorganismen. Schweiz Landwirtsch Forsch 23:227–239

    Google Scholar 

  • Styperek P (1986) Die Cd-Aufnahme von Pflanzen aus verschiedenen Böden und Bindungsformen and ihre Prognose durch chemische Extraktionsverfahren. Forschungsbericht 103 01 225, Umweltbundesamt, Berlin

    Google Scholar 

  • Tyler G (1981) Heavy metals in soil biology and biochemistry. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Dekker, New York Basel, pp 371–414

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reber, H.H. Threshold levels of cadmium for soil respiration and growth of spring wheat (Triticum aestivum L.), and difficulties with their determination. Biol Fert Soils 7, 152–157 (1989). https://doi.org/10.1007/BF00292574

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00292574

Key words

Navigation