Skip to main content
Log in

Influence of elevated ecosystems levels on litter decomposition and mineralization

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Litter decomposition was studied at two forested watersheds in east Tennessee which differed primarily in their past history of atmospheric S input. Cross Creek Watershed, located near a large coal-fired power plant, has received greater S inputs than the more remote Camp Branch Watershed. Decomposition was estimated through the measurement of forest floor respiration, litter microflora populations, litter and soil microarthropod populations, and litter nutrient status. Average forest floor respiration rates were very similar, 6.78 g CO2 m−2 day−1 or 2472 g m−2 yr−1 at Camp Branch and 6.86 g CO2 m−2 day−1 or 2505 g M−2 yr−1 at Cross Creek. Fractional loss rates provided estimates of annual decay rates (k) of 0.35 and 0.39 for Camp Branch and Cross Creek, respectively. Litter decomposition was estimated to contribute 23% of the total CO2 output at Camp Branch and 26% at Cross Creek, while root respiration accounts for about 43 to 46%. Bacterial and fungal populations were about equal in size at both watersheds, with bacteria averaging 100 × 106 g−1 of litter and fungi 23 × 106 g−1 of litter. Total numbers of arthropods averaged 34% greater at Camp Branch. Acarina populations averaged 59% higher at Camp Branch, while Collembola numbers were about equal at the two watersheds. Nutrient mobility in the litter and soil was similar at both watersheds. The order of decreasing mobility was K, Mg, Ca, S, N, and P. Litterfall nutrient concentrations were slightly higher for all elements at Cross Creek, resulting in greater litter concentrations of Ca and Mg. Litter concentrations of S and N, however, were significantly greater at Camp Branch, indicating watershed differences in the loss rates and cycling processes of these elements. There were no differences between the loss rates or litter concentrations of P, K, and Na at either site. Overall, decomposition was similar at the two watersheds. Historic S inputs do not appear to have had a major effect on decomposition rate or decomposer organisms with the possible exception of lowered arthropod populations at Cross Creek.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamsen, G., Horntvedt, R., and Tveite, B.: 1977, Water, Air, and Soil Pollut. 7, 57.

    Google Scholar 

  • Anderson, J. M.: 1973, J. Appl. Ecol. 10, 361.

    Google Scholar 

  • ADAC: 1971, Official Methods of Analysis of the AOAC (12th ed.), Washington, DC.

  • Attiwill, P. M.: 1968, Ecology 49, 142.

    Google Scholar 

  • Baath, E., Berg, B., Lohm, U., Lundgren, H., Rosswall, T., Soderstrom, B., and Wein, A.: 1980, Pedobiologia 20, 85.

    Google Scholar 

  • Bocock, K. L.: 1964, J. Ecol. 52, 273.

    Google Scholar 

  • Bocock, K. L. and Gilbert, O.: 1957, Plant and Soil 9, 1985.

    Google Scholar 

  • Bocock, K. L., Gilbert, O., Capstick, C. K., Twinn, D. C., Waide, J. S., and Woodman, M. J.: 1960, J. Soil Sci. 11, 1.

    Google Scholar 

  • Cromack, K.: 1973, ‘Litter Production and Decomposition in a Mixed Hardwood Watershed and a White Pine Watershed at Coweeta Hydrologic Station, North Carolina’, Ph.D. Dissertation, Univ. of Georgia, Athens, GA.

    Google Scholar 

  • Edwards, C. A., Reichle, D. E., and Crossley, D. A.: 1969, Ecology 50, 495.

    Google Scholar 

  • Edwards, N. T.: 1975, Soil Sci. Soc. Am. J. 30, 361.

    Google Scholar 

  • Edwards, N. T. and Harris, W. F.: 1977, Ecology 58, 431.

    Google Scholar 

  • Edwards, N. T. and Sollins, P.: 1973, Ecology 54, 406.

    Google Scholar 

  • Edwards, N. T.: 1982, Pedobiologia 23, 321.

    Google Scholar 

  • Edwards, N. T. and Ross-Todd, B. M.: 1983, Soil Sci. Soc. Am. J. 47, 1014.

    Google Scholar 

  • Feher, D.: 1933, Untersuchungen uber die Mikrobiologie des Waldbodens, Springer-Verlag, Berlin.

    Google Scholar 

  • Gist, C. S. and Crossley, D. A.: 1975, Am. Midl. Natur. 93, 107.

    Google Scholar 

  • Gosz, J. R., Likens, G. E., and Bormann, F. H.: 1973, Ecol. Mono. 43, 173.

    Google Scholar 

  • Holm, E. and Jensen, V.: 1972, Oikos 23, 248.

    Google Scholar 

  • Hovland, J.: 1981, Soil Biol. Biochem. 13, 23.

    Google Scholar 

  • Jenny, H., Gessel, S. P., and Bingham, F. T.; 1949, Soil Sci. 68, 419.

    Google Scholar 

  • Joossee, E. N. G. and van Vliet, L. H. H.: 1984, Pedobiologia 26, 249.

    Google Scholar 

  • Kahn, H. L.: 1971, Analytical Methods for Atomic Absorption Spectrophotometry, Perkin-Elmer Co., Norwalk, CN, 132 p.

    Google Scholar 

  • Kelly, J. M.: 1979, EPA-600/7-79-053, 158 p.

  • Kelly, J. M.: 1984a,in E. L. Stone (ed.), Forest Soils and Treatment Impacts, University of Tennessee-knoxville, 265 p.

  • Kelly, J. M.: 1984b, J. Environ. Qual. 13, 405.

    Google Scholar 

  • Kelly, J. M.: 1984c, Water, Air, and Soil Pollut. 22, 143.

    Google Scholar 

  • Kelly, J. M. and Henderson, G. S.: 1978, Soil Sci. Soc. Am. J. 42, 972.

    Google Scholar 

  • Kelly, J. M. and Meagher, J. F.: 1986, in D. L. Corell(ed.), Watershed Research Perspectives, Smithsonian Press, Washington, DC, 451 p.

  • Kelly, J. M. and Strickland, R. C.: 1984, Water, Air, and Soil Pollut. 23, 431.

    Google Scholar 

  • Likens, G. E., Bormann, F. H., Pierce, R. S., Eaton, J. S., and Johnson, N. M.: 1977, Biogeochemistry of a Forested Ecosystem. Springer-Verlag, New York.

    Google Scholar 

  • Lousier, J. D. and Parkinson, D.: 1978, Can. J. Bot. 56, 2795.

    Google Scholar 

  • MacLean, D. A. and Wein, R. W.: 1978, Can. J. Bot. 56, 2730.

    Google Scholar 

  • Martin, J. P.: 1950, Soil Sci. 69, 215.

    Google Scholar 

  • McBrayer, J. F. and Reichle, D. E.: 1971, Oikos 22, 381.

    Google Scholar 

  • Olson, J. S.: 1963, Ecology 44, 322.

    Google Scholar 

  • Ramseur, G. S. and Kelly, J. M.: 1981, J. Tenn. Acad. Sci. 56, 99.

    Google Scholar 

  • Reiners, W. A. and Reiners, N. M.: 1970, J. Ecol. 58, 497.

    Google Scholar 

  • Rodin, L. E. and Bazilevitch, N. I.: 1967, Production and Mineral Cycling in Terrestrial Vegetation, Scripta Technica Ltd., London.

    Google Scholar 

  • Ruhling, A. and Tyler, G.: 1973, Oikos 24, 402.

    Google Scholar 

  • SAS Institute: 1985, SAS User's Guide, SAS Institute, Inc., Raleigh, NC.

    Google Scholar 

  • Shanks, R. E., and Olson, J. S.: 1961, Science 134, 194.

    Google Scholar 

  • Steel, R. G. D. and Torrie, J. H.: 1960, Principles and procedures of Statistics, McGraw-Hill, New York.

    Google Scholar 

  • Tatum, C. O., Wiklander, G., and Popovic, B.: 1977, Water, Air, and Soil Pollut. 8, 75.

    Google Scholar 

  • Thomas, W. A.: 1970, J. Appl. Ecol. 7, 237.

    Google Scholar 

  • Tullgren, A.: 1918, Z. Angew. Ent. 4, 149.

    Google Scholar 

  • Williams, S. T., McNeilly, T., and Wellington, E. M. H.: 1977, Soil Biol. and Biochem. 9, 271.

    Google Scholar 

  • Witkamp, M.: 1963, Ecology 44, 370.

    Google Scholar 

  • Witkamp, M.: 1966a, Ecology 47, 194.

    Google Scholar 

  • Witkamp, M.: 1966b, Ecology 47, 492.

    Google Scholar 

  • Witkamp, M.: 1974, Soil Sci. 118, 155.

    Google Scholar 

  • Witkamp, M. and Van der Drift, J.: 1961, Plant and Soil 15, 295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author for all correspondence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larkin, P., Kelly, J.M. Influence of elevated ecosystems levels on litter decomposition and mineralization. Water Air Soil Pollut 34, 415–428 (1987). https://doi.org/10.1007/BF00282742

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00282742

Keywords

Navigation