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Summary 

A time-dependent, nonlinear model of neuronal interaction which was probabilistically analyzed in 
a previous article is shown here to be a natural generalization of the Hartline-Ratliff model of the 
Limulus retina. Although the primary physical variables in the model are the membrane potentials of 
neurons, the equations which govern the means and covariances of the membrane potentials are 
coupled through the average firing rates; as a consequence, the average firing rates control the 
selective storage and retrieval of covariance information. Motor learning in the cerebellar cox"~ex is 
treated as a problem of covariance storage, and a prediction is made for the underlying synaptic 
plasticity: the change in synaptic strength between a parallel fiber and a Purkinje cell should be 
proportional to the covariance between discharges in the parallel fiber and the climbing fiber. Unlike 
previous proposals for synaptic plasticity, this prediction requires both facilitation and depression 
to occur (under different conditions) at the same synapse. 

Introduction 

Graded membrane potentials, which are responsible for the spatial summation 
and temporal integration of electrical activity within neurons, are now 
believed to play a direct role in local interaction between neurons (Rakic, 
1975). Action potentials remain important for many neurons and are the 
sole means for rapid, long-distance communication. One aim of this article 
is to physically motivate a model of neuronal interaction which provides a 
unified treatment of these two electrical potentials. The model is nonlinear 
and time-dependent, and all the variables appearing in it are operationally 
defined. The primary physical variable is based on the membrane potential. 
However, if the firing rates depend linearly on the membrane potentials, then the 
model, as shown in Part I, is physically equivalent to the Hartline-Ratliff 
model of the Limulus retina, which can be considered a special case. 

Because ongoing electrical activity of single neurons has an apparently random 
character in most parts of the brain, and since in many experiments the main 
data - -  such as average firing rates - -  are statistical, a probabilistic analysis 
of the nonlinear model has been undertaken (Sejnowski, 1976b). The main 
results are summarized in Part II. If the membrane potentials have a Gaussian 
distribution, then the equations which govern membrane potential covariances 
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represent a linear filter. Identical equations are used in communication theory 
to extract signals from noise (Kalman and Bucy, 1961), and in systems theory 
to model and control physical systems (Kalman, Falb, and Arbib, 1969). 
Unlike a conventional linear filter, however, a neuronal filter is adjustable: 
its characteristics can be altered by varying the average firing rates of the 
neurons in the filter. The biological significance of adjustable neuronal filters 
is discussed in Part III. 

The main concern of this article is with the long-term storage of covariance 
information. The cerebellum was chosen as a model system first because of 
its simple, repetitive, well-studied structure, and second because of recent 
experimental and theoretical work on cerebellar motor learning with which the 
present work can be directly compared. The cerebellum is treated as an 
adaptive filter in Part IV, where the optimal synaptic modification is found 
using the method of adaptive learning (Tsypkin, 1973). This approach to 
cerebellar motor learning is similar to that of Marr (1969), but his theory of 
information processing and his prediction for synaptic plasticity are different. 
Because the present theory predicts the selective weakening as well as 
strengthening of synaptic strengths in a balanced combination, the problem of 
synaptic saturation from random modification is overcome and the entire 
dynamic range of synaptic strength is always accessible. These results are 
applied in Part V to covariance storage in other areas of the brain. 

Although the theory of information processing examined in this article depends 
fundamentally on the cooperative interaction of many neurons, the implications 
of the theory can be tested with intracellular recordings from single neurons 
and from neighboring pairs of neurons. A summary of indirect evidence and the 
design for a direct experimental test are given in the closing discussion. 

I. Nonlinear Model 

Many neurons, including a majority of the neurons in the vertebrate retina 
(Werblin and DoMing, 1969), do not produce an action potential and influence 
other neurons through continuously graded membrane potentials. In a neuron 
which does produce an action potential, the membrane potential determines 
the average firing rate. If the membrane potential is above threshold and the 
firing rate is well below maximum, then, according to the "slow potential 
theory" of neuronal interaction as presented by Stevens (1966), a neuron's 
average firing rate transmits to other neurons a faithful reproduction of its 
membrane potential, diminished in amplitude but unaltered in shape. A non- 
linear version of this "slow potential theory" is given here and developed in 
greater detail in Appendix 1. 

One of the simplest linear models for neurons which do not produce action 
potentials is given by 

d 
vo+ vo = Z/(o  vb+& L, (1) 

b 
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where V a are the somatic membrane potentials, ~ is the membrane time 
constant, Ia are the external input currents, R~ are the effective load resistances, 
and K~b are dimensionless coupling strengths. Action potentials, which 
introduce a strong nonlinearity in neuronal interaction, can be treated in an 
approximate but realistic way. The response of an idealized impulse-producing 
neuron to a constant input current is shown in Fig. 1. In the absence of action 
potentials (for example, when the sodium conduction channels are blocked), 
the membrane potential varies smoothly above the threshold for discharge. 
Define the effective membrane potential as the membrane potential which 
would be present in a neuron if the action potential were absent. The firing 
rate p (~b) of an idealized neuron, which is a function of the effective mem- 
brane as shown in Fig. 2, has a sharp threshold and, because of the absolute 
refractory period, an upper bound. 

0 t 

(b) 

V2 

t 

Fig. 1. (a) The membrane  potential of an idealized neuron as a function of time in response 
to a constant input current starting at t = 0. The dashed line represents the effective membrane  
potential which would be present in the absence of action potentials. (b) The membrane  potential 
of a second idealized neuron which receives synaptic input from the first, as illustrated in Fig. 3 

y 
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Fig. 2. The firing rate p (~b) as a function of effective membrane  potential q~ for an idealized neuron 
with firing threshold 0 

22* 
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Fig. 3. Schematic illustration of two neurons with a synaptic connection K21 from the first to the 
second and with inputs r/1 and qz respectively. Micropipettes record the intracellular membrane 

potentials 1/1 and 112 

For the coupled pair of neurons represented in Fig. 3, repetitive firing of the 
presynaptic neuron produces a repetitive postsynaptic potential, as shown in 
Fig. lb. Under steady-state conditions the average postsynaptic potential is 
constant and, for an idealized neuron, proportional to the firing rate. A model 
for a collection of such interacting neurons is given by 

d 
T ~ (t~a + t~a = ~ gab lOb (~)b) "~ ~ nab ~b, (2) 

b b 

where t/b (t) are the input firing rates, B,b are the input coupling strengths, and 
Kab a r e  the internal coupling strengths, with units of potential/rate. Because the 
effective membrane potentials are continuous, this nonlinear model applies 
equally well to neurons which do not produce action potentials and parts 
of neurons which interact through graded synapses. 

Above the threshold for lateral inhibition, the response of the Limulus retina 
to a steady-state pattern of light is given, to a good approximation, by the 
Hartline-Ratliff model (1957) 

1,. a = ea -- ~ I Kab rb, (3) 
b 

where r a is the rate of firing of an ommatidium, ea represents the input, and 
K~b are the inhibitory coefficients. If in the nonlinear model the effective 
membrane potentials are constant, then they can be eliminated in favor of the 
firing rates 

ra = lOa (~ Bab rib -t- ~ K,b rb). (4) 
b b 

The Hartline-Ratliff equation is equivalent to this equation when p (qS), shown 
in Fig. 2, is restricted to the approximately linear region above threshold. 
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Although many details of real neurons are not included in the continuous model 
motivated here, the main results based on it also hold in a more general model, 
given in Appendix 1, which takes into account axonal latency and dendritic 
electrotonus. Other factors, such as nonlinear voltage-dependent conductances, 
will be considered elsewhere. 

In summary, the highly nonlinear action potential was eliminated by first 
redefining the membrane potential above the threshold for discharge, and secondly 
by smoothing the postsynaptic potentials. The nonlinear model (2) based on this 
effective membrane potential differs from the linear model (1) by an effective 
nonlinear interaction, as represented in Fig. 2. 

H. Probabilistic Analysis 

The solution of the nonlinear model for a particular input is of less inter- 
est than the class of solutions generated by an ensemble of randomly varying 
inputs. The lowest order moments of the resulting ensemble of solutions 
contain a concise description of the model's probabilistic structure. The mean 
of the effective membrane potential is defined as 

(t) = E (t), (5) 

where E is the expectation, or ensemble average. By virtue of Eq. (2), the 
means satisfy 

d 
v Z ~a + ~ = Z Ko~ Rb (~bb) + Z B,b qb, (6) 

b b 

where the average firing rates are 

Rb = E (7) 
and 

qb = E t/b. 

Equations with similar nonlinearities have been investigated by Wilson and 
Cowan (1968) and Grossberg (1973), who base their models on populations of 
neurons. The primary variable in their equations is the fraction of neurons 
in an "excited state". In the present case the membrane potentials of individual 
neurons are studied and the averages are over ensembles in a probability 
space rather than over physical populations. 

In general, the equations for the mean effective membrane potentials are 
coupled, through the average faring rates R (~b), to equations for the higher 
moments. Because of membrane potential fluctuations, the average firing rate 
of a neuron as a function of ~, holding all higher order moments fixed, 
is smoother than p (~b). For example, Fig. 4 shows R(~)  for p (q~) a step 
function at threshold 0 and with 4~ having Gaussian distribution. 

The covariance between the effective membrane potentials is defined as 

Cov (~o (s), ~ (t)) = E (~o (s) - ~o (s)) ( ~  (t) - ~ (t)) (8) 
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and satisfies a nonlinear equation by virtue of Eq. (2). However, an unexpected 
simplification occurs in the analysis of the covariance equation if a physically 
reasonable assumption is made concerning the probability distribution of the 
membrane potentials (Sejnowski, 1976 b). In an area like cerebral cortex each 
neuron may receive input from thousands of others. By the central limit 
theorem the sum of a large number of independently random inputs has, 
under quite general conditions, a Gaussian distribution. If we assume that 
~b a (t) are Gaussian processes, then the differences qS, ( t ) -  ~,  (t) have the same 
joint distribution as ~b', (t), defined as the solution of 

d 
T ~'~ ~'a -~" ~ A ab dP'b + ~, Bah tl'b, (9) 

b b 

where ~/~ (t) are Gaussian processes having zero mean and the same covariance 
as ~/b (t), and Aab-~ K'ab- C~ab , where 6~ is the Kronecker delta and 

K;b (t) = K,b R~ (~b h (t)) (10) 

8 R b 
n~ (qSb) = g ~b" (11) 

This equation, which determines the covariance of qS, and will be called the" 
covariance equation, resembles the linear model for graded electrical coupling 
(1), with the interaction matrix K'~b playing the role of the linear coupling 
coefficients. The multiplicative weights R~ appearing in these effective coupling 
strengths depend on the membrane potentials, as shown in Fig. 4. Those neurons 
with average membrane potentials near threshold and those connections 
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Fig. 4. The average firing rate R (5) and its derivative R' (5) as functions of the mean effective 
membrane potential 5. The threshold for firing is 0 
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between such critical neurons contribute most effectively to the covariance 
equation. Despite the linear form of the covariance equation, the coupled 
equations for the means and covariances are, of course, nonlinear. In the 
stationary case, the mean membrane potentials are independent of time, the 
membrane potential covariances depend only on time differences, and the 
equations for the means and covariances are coupled only through the 
variances. These equations may have more than one solution (Sejnowski, 
1976a). 

The assumption that the effective membrane potentials are Gaussian can be 
tested experimentally and enters at the same physical level as the assumptions 
which led to the nonlinear model. A more general model is given in Appendix 1 
which takes into account the random element in spike production and from 
which it follows as a theorem that the membrane potentials are Gaussian. 
If the membrane potentials are indeed Gaussian then, because only the first 
two moments of Gaussian processes are independent, only a small part of all 
the detailed timing information in afferent spike trains is available for 
processing by the membrane potentials. 

V(t) (o) 

r (b). 

(~(t) (cl 

r (d) 

~ #X r-. f-. ~ #x A [ 

Fig. 5. Summary diagram of the variables which enter in the analysis of neuronal interaction. 
(a) The membrane potential V(t) includes action potentials as well as the graded potential. 
(b) ~b (t) is the effective membrane potential which would be present if the action potential were absent. 
(c) ~ (t) is the mean effective membrane potential. (d) ~b' (t) is equivalent to the difference q~ (t) - ~ (t) 

which is quadratically related to the covariance of ~b (t) 
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The nonlinear model of neuronal interaction, summarized in Fig. 5, becomes 
more linear at each successive stage of probabilistic analysis: (a) The mem- 
brane potential, including the highly nonlinear action potential, is the primary 
variable. (b) A smoother effective membrane potential is introduced which 
leads to the nonlinear model (2). (c) At the next level the equation (6) for the 
mean effective membrane potentials is significantly less nonlinear. (d) In the 
last stage of analysis the covariance equation (9) has a linear form. These last 
two levels are coupled by the average firing rates (7). 

III. Neuronal Filters 

The covariance equation represents a linear filter whose dimension is equal 
to the number of neurons in the filter. In some respects the solution of the 
stationary covariance equation (Sejnowski, 1976 b) resembles the normal mode 
analysis of small vibrations in mechanical systems. The interacting neurons 
are particularly sensitive to input covariances with special spatial patterns, 
which depend on the eigenvectors of the interactions matrix, and special 
frequencies, which depend on its eigenvalues. However, the normal modes of a 
mechanical system are derived from a symmetric matrix and are always 
orthogonal, but the interaction matrix is generally not symmetric and its 
eigenvectors are generally not orthogonal. As a consequence, coupled covariance 
modes can appear which correspond to eigenvectors lying in the same direction; 
when excited, they emerge and decay in sequence. Moreover, the qualitative 
behavior is same even when the eigenvectors are only approximately degenerate. 

Because the interaction matrix in the covariance equation depends on R;, the 
covariance modes of a neuronal filter are adjustable and depend on the 
average firing rates. Thus, an area of the brain could, through descending 

, influence on the background firing rates, affect the filter characteristics of a 
lower processing center. Such an adjustable filter may underlie the ability of an 
organism to selectively direct its attention and to extract special features from 
sensory information. 

Some afferent systems to an area may contribute little to the background 
firing rates but could have a significant affect on membrane potential co- 
variances. An experiment concerned solely with average firing rates might not 
detect such an input even if it were a major source of information to the area. 
Cases of major anatomical pathways without corresponding electrophysiological 
influence, as judged by average rate, are not uncommon. For example, most 
ascending projections from thalamic nuclei to cerebral cortex are accompanied 
by reciprocal corticothalamic tracts, but the electrophysiological influence of 
these descending projections to the thalamus is weak compared to the 
influence of other afferents. In the visual system of the cat, the responses of cells 
in the dorsal lateral geniculate nucleus to spots of light are not affected by 
cooling visual cortex (Kalil and Chase, 1970). However, for some neurons 
the cooling had a significant reversible effect on the pattern of impulses in 
response to moving slits of light. If the primary purpose of descending influence 
to thalamic relay nuclei is to provide such timing information, then cortical 
feedback could play an important role in covariance processing. 
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IV. Motor Learning 

Information processed as membrane potential covarianc~ might be stored 
in a similar form. The remainder of this article is concerned with covariance 
storage and its possible relation to learning and memory. In this part 
cerebellar motor learning is examined, and in the next part the results are applied 
to other areas of the brain. 

The cerebellum participates in the control of movement directly through its 
influence on spinal motoneurons and indirectly through the modification of 
motor commands from higher centers. Purkinje cells, which provide the only 
output from the cerebellum, have two main afferent systems, the climbing fibers 
and the mossy fibers. The entire dentritic tree of a Purkinje cell is entwined 
by a single climbing fiber. In contrast, mossy fibers branch extensively, each 
fiber reaching, through granule cells and parallel fibers, thousands of Purkinje 
cells. A schematic view of a Purkinje cell dendrite is shown in Fig. 6. 

pf 

Pd 

CF 

Fig. 6. Schematic illustration of a cerebellar Purkinje cell dendrite Pd, a climbing fiber CF 
(entwining the dendrite trunk), and a parallel fiber pf (passing through the dendrite tree), based on 
Palay and Chan-Palay (1974). Climbing fiber varicosities make numerous synaptic contacts with 
spines on the dendritic trunk. The synapse between the parallel fiber and the dendritic branchlet 

of the Purkinje cell is assumed to vary in strength 

It is generally believed that, in coordinating sensory and motor information, 
the cerebellum uses average rate of firing as its main neural code. Purkinje 
cells generally have a high spontaneous firing rate of 20 to 100/second, but 
climbing fibers on average discharge at only 1/second (Eccles, Ito, and 
SzentSgothai, 1967). Recordings from pairs of nearby climbing fibers show 
significant correlations lasting more than 100 milliseconds (Bell and Kawasaki, 
1972). Thus, the climbing fiber system may be primarily concerned with timing 
information. 

The cerebellum is involved in "fine-tuning" the vestibulo-ocular reflex, a 
compensatory eye movement induced by head rotation (Ito, 1975; Robinson, 
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1976). Because synaptic delays would be greater than the response time of 
the reflex, no closed-loop feedback from the retina to the vestibular nuclei 
is possible. However, the cerebellum does receive visual feedback through the 
climbing fiber system, and the accuracy of the open-loop vestibulo-ocular reflex 
is improved by visual experience over a time scale of days. Lesion of the 
vestibulo-cerebellum entirely abolishers this behavioral plasticity. 

Marr (1969) has proposed a theory for how the cerebellum could learn to 
perform motor skills. A climbing fiber, according to Marr's explanation, modifies 
the synapses between the parallel fibers and the Purkinje cell: after being 
"taught" to activate the Purkinje cells, the same input along the parallel fiber 
system fires the Purkinje cells without the help of the climbing fiber input. 
This approach to  motor learning, formulated by Marr entirely within a rate- 
coded theory of information processing, can be reformulated within the frame- 
work of covariance processing. 

Let ~ba (t) be the effective membrane potentials of all the neurons in the 
cerebellum, including intrinsic neurons, and let ~/b (t) and r (t) represent the 
mossy fiber and climbing fiber inputs, with input coupling strengths Bah and 
Ca respectively. Since each Purkinje cell receives approximately 100,000 
synaptic connections from parallel fibers, we can reasonably assume that the 
membrane potentials of Purkinje cells are Gaussian. Then, following the conven- 
tions in Part II, the covariances satisfy 

d 
z ~-f (o' a = ~ Aab ~ + ~ Bah tlb + Ca ~'a, (12) 

b b 

and the part of the covariances ~'a (t) arising from climbing fiber inputs satisfies 
d 

"r -dr ~b',, = ~ A ab ~'b + Ca ~'a . (13) 
b 

How should the synaptic strengths Ko~ be altered so that membrane potential 
covariances ~b'a (t) before learning are augmented by a small amount ~ ~O' a (t) after 
learning has taken place? If the synaptic strengths were altered by a small 
amount ~ X,b, then Eqs. (12) and (13) require, to first oder in e, that 

co r (0 = ~ Kob ~ (0 ~ (0. (14) 
b 

If the plastic synapses are the ones between parallel fibers and Purkinje cells, 
then the only contribution to the right side of Eq. (14) are the output co- 
variances from the granule cells. In terms of the firing rates of the granule cells 

~o (t) = po (~a (t)), (15) 

the requirement for associative storage becomes 

C a ~1 a (t) - ~ - Z  Kab ~b (t), (16) 
b 

where ~'a(0 and ~(t) are the input covariances to Purkinje cells arising 
from the climbing fibers and the parallel fibers respectively. Since these are 
arbitrary temporal processes and ~cab are fixed modifications to the coupling 
strengths, Eq. (16) can only be approximately satisfied. 



Storing Covariance With Nonlinearly Interacting Neurons 313 

The optimal value of ~ which minimizes the mean square error between 
the right and left sides of Eq. (16) is found in Appendix 2, but it requires 
a priori  knowledge of the covariances and cannot be practically implemented 
with neurons. The method of stochastic approximation provides an algorithm 
for recursively estimating the optimal solution when only sample functions are 
given (Tsypkin, 1973). The present problem differs from most applications of this 
method in that the nonlinear background as well as the linear system being 
optimized depends on the coupling strengths. This difficulty will not be dealt 
with here; the present treatment is valid only for small changes to the synaptic 
strengths. 
The predicted modification to the coupling strengths, derived in Appendix 2, 
is given by the learning algorithm 

bCab = 7 S t dt '  Ca [~a (t') ~b (t') -- ~a (t') ~b (t')], (17) 

where 7 is a constant. The covariance on the right side is the temporal 
correlation between the climbing fiber and the parallel fiber relative to the 
product of their means - -  that part of the correlation owing to chance. Notice 
that, consistent with cerebellar neuroanatomy, a single climbing fiber must 
be able to influence all the modifiable synapses on a single Purkinje cell. 

Because the covariance in the learning algorithm can be either positive or 
negative, the plastic synapse should be capable of both long-term facilitation 
and depression. In comparison, Marr's theory (1969) only predicts facilitation 
when there is a "conjunction of presynaptie and climbing fiber (or post- 
synaptic) activity". Such a plastic synapse eventually reaches maximum strength 
through chance coincidences, or else loses information by nonspecific decay. 
The plastic synapse predicted here maintains a constant average strength 
when the climbing fiber and the parallel fiber are uncorrelated; when these 
inputs are appropriately correlated the synaptic strength can be flexibly 
adjusted anywhere within its dynamic range (Sejnowski, 1977). 

V. Memory 

Climbing fibers played an important role in the treatment of covariance 
storage in the cerebellum. Similar anatomical processes have been found in 
cerebral cortex by Cajal (1911)~ and more recently Szent~tgothai (1969) has 
written that "in the Golgi picture it is quite common to see a number of fine 
terminal axons running for considerable distances closely associated into 
bundles which in many cases can be seen to contain a dendritic shaft in their 
axes". Thus, the learning algorithm (17) could also be used for long-term co- 
variance storage in cerebral cortex. 

There are, however, major differences between the information stored in 
cerebellar cortex and elsewhere. In the cerebellum, the membrane potential 
covariances of granule cells depend mainly on the mossy fibers and very 
little on the climbing fibers. As a consequence, the learning algorithm simply 
associates the covariances along these two afferent systems. In a more highly 
interconnected area, such as cerebral cortex, the climbing fiber input could 



314 T.J. Sejnowski: 

influence neurons which themselves appear on the right side of Eq. (14). 
Another difference between cerebellar and cerebral cortex lies in the damping 
time of their covariance modes. The cerebellum participates in ballistic 
movements such as saccadic eye movements. Long reverberations would not 
be helpful and might even interfere with the precision timing required for 
fine control. Parts of the cerebral cortex are concerned with coordination 
on a longer time scale and can be expected to have a corresPondingly longer 
coherence time for membrane potential correlations. 

A component of short-term memory is believed to depend on electrical rever- 
berations, though it is not known what physical aspects of transient electrical 
activity are involved. If the covariance modes of the brain had a sufficiently 
long coherence time, then membrane potential covariance could serve as the 
physical basis for short-term memory. Temporary storage of information, how- 
ever, is likely to be the result of not one but several interacting control pro- 
cesses. For example, any means for maintaining or reproducing the background 
firing rates in an area would preserve its covariance modes. Short-term 
changes to the strengths of synapses may also be important. 

A neuronal filter already has some of the properties which would be 
desirable for long-term memory. The processing is distributed in a large collec- 
tion of neurons, and information can be retrieved a s  temporal sequences 
of covariance modes. A neuronal filter has the additional advantage that 
different covariance modes can be selected by adjusting the background firing 
rates of the neurons. The cerebral cortex receives inputs from thalamic nuclei, 
association fibers from other cortical areas, commisural fibers from the 
corpus collosum, and a variety of other afferents from the brain stem, basal 
ganglia, and elsewhere. The background firing rates in a cortical area could be 
controlled by several of these afferent systems, one part arising from general 
arousal and another part from a specific sensory modality. Other afferents 
may be primarily concerned with processing covariance information. 

For example, consider visual cortex. Under normal conditions the background 
firing rates of neurons in a high-order visual area depend mainly on sensory 
input. Imagine that covariance information, perhaps from other sensory 
modalities, is stored while viewing a particular scene. If subsequently 
another afferent system could, in the absence of visual input, reestablish the same 
or similar background firing rates, then the stored covariances could be 
retrieved and used for further processing. Visual associations may be stored in 
this manner for many different visual scenes, each corresponding to a different 
set of background firing rates. 

The synaptic plasticity predicted from the learning algorithm is small and 
occurs slowly compared to dynamic time scales. For a stable solution of the 
nonlinear model, small changes to synaptic strengths cause correspondingly 
small changes in covariance processing (Sejnowski, 1976 b). However, if the 
interaction matrix has eigenvalues with real parts near one, then the solution 
is nearly unstable and a small change to synaptic strengths could produce a 
large change to the coupled nonlinear equations (Sejnowski, 1976a). 
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In summary, the background firing rates determine the covariance modes 
in an area, but only those modes which are persistently excited by incoming 
correlations are strengthened. How synaptic modification affects previously 
stored information is examined in Appendix 2. 

Discussion 

Because an impulse-producing neuron is maximally sensitive to input corre- 
lations when its average membrane potential is near threshold, neurons which 
process covariance information must maintain a moderate rate of firing. The 
levels of spontaneous activity found in many parts of the nervous system 
meet this requirement. There is in fact some indirect evidence for the sensory 
coding of correlations and the use of correlation information in the auditory, 
somatosensory, and visual systems. 

In the auditory system, phase information in the phase-locked discharges be- 
tween the two ears is used for low-frequency binaural localization (Jeffress, 
1975). Temporal information in the auditory nerve discharges may also have 
an important role in pitch perception (Plomp, 1975). In the somatosensory system, 
information coded as interspike intervals can apparently be used for per- 
ceiving the frequency of flutter-vibration (Mountcastle, 1967), and some central 
neurons fire with preferred interspike intervals even under normal conditions 
(Amassian and Giblin, 1974). In the visual system, random-dot stereograms, 
which have a random texture when viewed monocularly, are perceived in 
depth if the dots are binocularly correlated either spatially (Julesz, 1971) or 
temporally (Ross, 1974). 

Simultaneous recordings of spike trains have been obtained from pairs of neurons 
in the retina (Rodiek, t967), the lateral geniculate nucleus (Stevens and 
Gerstein, 1976), the cerebellum (Bell and Kawasaki, 1972), the auditory cortex 
(Dickson and Gerstein, 1972), and elsewhere. The spike trains in many cases 
were significantly correlated. Viewed from the present perspective, the 
question of whether the correlations were produced by direct interaction or a 
common input is secondary to the question of whether large-scale corre- 
lations exist and are related to sensory processing. Since in most neurons 
the membrane potential is often below the threshold for producing impulses, 
correlations between membrane potentials should be at least as prominent as 
the correlations found between spike trains. 

The significance of correlations between membrane potentials for sensory pro- 
cessing can be investigated with intracellular recording. An ensemble of 
intracellular records from a pair of neurons responding to a controlled 
sensory stimulus could be used to determine the means and covariance of the 
membrane potentials and to test the assumption that membrane potentials are 
approximately Gaussian. 

The long-term storage of covariance information depends on synaptic plasticity 
similar to that proposed by Hebb (1949), Marr (1969), and Stent (1973). The 
strict balance between facilitation and depression required by the present 
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prediction distinguishes it from other proposals (Sejnowski, 1977). As a con- 
sequence, the average strength of a plastic synapse cannot be altered by simply 
increasing the firing rate of the climbing fiber or the parallel fiber. For the 
synaptic strength to vary, the impulses in these two afferents must occur in 
coincidence more often or less often than by chance. 

The next step toward describing biological reality is the detailed modeling of spe- 
cific areas. Unless our understanding of basic neuronal function is seriously 
in error, the nonlinear model analyzed here should provide a reasonably good 
first approximation. The remarkable parallels with communication and systems 
engineering could prove useful not only in analyzing experimental data but as 
well in understanding the design principles of the nervous system. 

Acknowledgement 

I am especially grateful to David Bender, Bruce Knight, Jr., and Murray Lampert for helpful 
discussions and useful suggestions. 

Appendix 

1. Point Process Model 

The results of this article are based on the model of neuronal interaction 
which was motivated in Part I. This continuous model is derived here from 
a point-process model, and the variables in both models are given precise 
interpretations. 

A spike train, regarded as a sequence of points in time, can be modeled by a 
stochastic point process on the real line (Snyder, 1975). Let N (t) represent the 
number of spikes on time interval [0, t). Assume that the mean number of spikes 
E N (t) is differentiable, and define the "instantaneous average rate" 

d 
(t) = E N (0 .  (18) 

For example, consider the case when the point process is Poisson. Then the 
probability that there are n spikes on the interval [0, t) is 

P (N(t)= n) = (n!) - t  A (t)" e -a('), (1.9) 
with 

A (t) = at'  (t'). 

Since the mean number of spikes on the interval is E N (t)= A (t), the "in- 
stantaneous average rate" is t /( t)= ). (t). This interpretation of 17 (t) is related 
to the "instantaneous rate", an experimental variable which has been useful 
in measuring the dynamic response of the Limulus retina (Ratliff, 1974). Given 
a spike train with spikes at times {rl}, the "instantaneous rate" is defined as 

a ( t ) = ( t  i + l - t i ) - t ,  t i< t_<t  I+1. (20) 
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Fig. 7. A typical spike train S (t) as a function of time, the cumulative number of spikes N (t), and 

the "instantaneous rate" a (t), defined by Eq. (20) 

I t  is a p p a r e n t  f r o m  Fig. 7 t ha t  

~6 dt '  ~ (t') = N (t) + e (t) 

w h e r e  the  e r ro r  is b o u n d e d  ] e (t) ] < 1 and  E ~ (t) = 0. C o n s e q u e n t l y ,  the a v e r a g e  

o f  the  " i n s t a n t a n e o u s  r a t e "  o v e r  an  e n s e m b l e  of  iden t i ca l ly  p r e p a r e d  e x p e r i m e n t s  

gives an e s t ima te  for the  " i n s t a n t a n e o u s  a v e r a g e  r a t e "  

d N ~ ( t ) :  27E (t):,l(t). (21) 

:r t 

t 

~p-ac ~ t 

Fig. 8. Idealized intracellular recording of the membrane potential x (t) as a function of time. 
Upon reaching threshold, an impulse is released and the membrane potential is reset to a lower 
potential. In contrast, the effective membrane potential 0 (t), which does not include the impulse or reset, 

is continuous. The difference 0 ( t ) - x ( t )  suffers a step discontinuity which damps exponentially 
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The "effective membrane potential" which was motivated in Part I can now 
be more precisely defined. Let ~k (t) be the membrane potential of a neuron 
which does not produce an action potential but which receives a spike train as 
input. Then the membrane potential satisfies the stochastic differential 
equation 

0 (t) + 0 (t) dt = B d N (t), (22) 

where B ist the jump in the postsynaptic potential from a single synaptic 
event. The effect of spike production on the membrane potential is shown in 
Fig. 8: the difference between the membrane potential with and without 
reset exponentially damps after each impulse. The average of Eq. (22) over an 
ensemble of point processes is 

d 
z ~-  ~b (t) + ~ (t) = n t/(t), (23) 

where the average membrane potential q ~ ( t ) = E ~ ( 0  corresponds to the 
"effective membrane potential" motivated in Part I. The resemblance between 
Eq. (23) and the continuous model (2) further suggests that p (0), previously 
defined as the firing rate to a constant input current, should be interpreted as 
an "instantaneous average rate". Thus, a natural generalization of the con- 
tinuous model is given by the stochastic integral equation 

t t 

Oa(t)=~. ~ Kab( t , t ' )dMb( t ' )+~,  ~ U,b(t , t ' )dNb(t ' ) ,  (24) 
b b 

where the point processes d M  b and d N  b satisfy 

d 
d--f E Mb (t) = Pb (~b (t)), (25) 

d 
d-T E n b (t) = ~/b (t). (26) 

The kernel K~b (t, t') is the temporal response of ~ (t) to an impulse at time t' from 
a neighboring neuron, and B~b (t, t') the response to an impulse from an external 
input. Since ~a(t) and t/b(t ) are themselves stochastic processes, the point 
processes in  Eq. (24) are doubly stochastic (Snyder, 1975). If a neuron receives 
many Poisson inputs, then by a central limit theorem its membrane potential is 
approximately Gaussian. 

The time-dependent coupling kernels in this point-process model take into 
account the electrical properties of the intervening axons, synapses, and dendrites. 
The special case 

1 
K,b (t, t') -= ~-  Kab e -(t-t')/~ (27) 

corresponds to the simple model of exponential decay considered in Part I. 
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2. Covariance Storage and Retrieval 

Covariance storage was examined in Part IV where conditions were derived 
on the modification of the synaptic strengths. The optimal modification is 
given here, together with an approximate algorithm for achieving it. The effect 
of covariance storage on previously stored information is also considered. 

Given the zero-mean processes ~'a (t) and ~, (t) on the time interval [0, T), the 
problem is to find K,b which minimizes the mean square error 

T 

gT (Kab) = E S dt ~, e2a (t), (28) 
0 a 

where 
e.  (t) = C a ~a (t) -- 2 Kab ~tb (t). (29)  

b 

The minimum occurs when the variation of ~ r  (Nab) with respect to X~b vanishes. 
The result is 

K* b (7) = C~ ~c dt Cov (~'a (t), ~; (t) �9 dt Cov (~; (t), ~; (t)) . (30) 

In the stationary case ~c* b (7) is independent of T. 

Stochastic approximation is a constructive method for estimating the optimal 
solution given only sample functions of the processes (Tsypkin, 1973). The 
adaptive learning algorithm for the present problem is 

d 
d t  ~,b = 7 C, [Cov (~'~ (t), ~; (t)) - ~ x,c Coy (~'c (t), ~; (t))], (31) 

r 

where 7 is a positive constant (or a negative constant if the associative storage 
is complementary). The magnitude of 7, corresponding to the efficiency of 
plasticity, is sufficiently small to insure convergence of ~ab to ~Ca*b, and sufficiently 
large to do so in a reasonable time. If 1cab is small, as assumed in Part IV, 
then the second term of Eq. (31) can be neglected, leaving 

d 
d t  tcab = 7 Ca Cov (~', (t), ~; (t)). (32) 

Notice that the integrated form of this approximate learning algorithm is pro- 
portional to the first factor of the optimal solution it* b in Eq. (30) (Pfaffel- 
huber, 1975). When only sample functions are given, the covariance may be 
approximated by 

d 
d~- K"b = 7 C, [r (t) ~b (t) - ~a (t) ~b (t)], (33) 

and the learning algorithm (17) follows by a simple integration. 

Let us now examine how information stored by this learning algorithm is 
retrieved. Consider the stationary case for which the solution to the covariance 
equation is (Sejnowski, 1976b) 

Journ. Math. Biol. 4/4 23 
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t 

~b'a(0 = ~  S & '  T~b ( t - - t ' )B~q '~  (t'), 
be 

where Tab(t--t' ) is the transit ion matrix. The Laplace t ransform 
equat ion is 

(34) 

of this 

~[4al =Y, ~[Lb] Bbc ~e[.;]. (35) 
bc 

If the per turbat ion of the interaction matrix 6 K~, b is sufficiently small, then the 
effect on the transit ion matrix, to first order in the per turbat ion (Sejnowski, 1976a), 
is given by 

6 &o [Tab ] = ~  &a [T~] 6 K;e &~o [Tab]. (36) 
cd 

The output  per turbat ion obta ined f rom Eq. (35) is 

~ [ 4 ; ]  = ~ La [Tab] 6 K;c ~ [q~;]. (37) 
bc 

Compar i son  of Eq. (35) with Eq. (37) reveals that  the per turbat ion of the output  
is equivalently p roduced  by 

Z Bbc b tl; (t) = Z 6 Kb~ R'~ (t) ~)" (t). (38) 
c c 

That  is, after the permanent  change b Kb~ has been made to the coupling 
strengths, the inputs are effectively augmented  by this added component .  
Notice that the effective input per turbat ion depends only on the output ,  
and that  it resembles the condit ion (14) for synaptic modification. This last 
result (38) is also valid for the nons ta t ionary  case and follows directly from the 
covariance equation. 
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