Skip to main content
Log in

Identification of the nifJ gene coding for pyruvate: ferredoxin oxidoreductase in dinitrogen-fixing cyanobacteria

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A 329 bp DNA segment from both Anabaena variabilis and Anabaena PCC 7119 was amplified using the polymerase chain reaction (PCR). The sequences from the two cyanobacteria showed strong similarities to the corresponding part of the nifJ gene from Klebsiella pneumoniae and Enterobacter agglomerans. The present findings underline earlier results of enzymatic studies that heterocystous cyanobacteria possess a pyruvate: ferredoxin (flavodoxin) oxidoreductase (PFO). The nifJ gene segment could not be detected in the non-dinitrogenfixing, unicellular cyanobacterium Anacystis nidulans which is also in accord with previous findings from enzyme assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams DG (1988) Isolation and restriction analysis of DNA from heterocysts and vegetative cells of cyanobacteria. J Gen Microbiol 134: 2943–2949

    Google Scholar 

  • Apte SK, Rowell P, Stewart WDP (1978) Electron donation to ferredoxin in heterocysts of the N2-fixing alga Anabaena cylindrica. Proc R Soc Lond B 200: 1–25

    Google Scholar 

  • Blaschkowski HP, Neuer G, Ludwig-Festl M, Knappe J (1982) Routes of flavodoxin and ferredoxin reduction in Escherichia coli. Eur J. Biochem 123: 563–569

    Google Scholar 

  • Böhme H, Haselkorn R (1989) Expression of Anabaena ferredoxin genes in Escherichia coli. Plant Mol Biol 12: 667–672

    Google Scholar 

  • Böhme H, Schrautemeier B (1987) Electron donation to nitrogenase in a cell-free system from heterocysts of Anabaena variabilis. Biochim Biophys Acta 891: 115–120

    Google Scholar 

  • Bothe H (1969) The role of phytoflavin in photosynthesis reactions. In: Metzner H (ed) Progress in photosynthesis research. University Press, Tübingen, pp 1483–1491

    Google Scholar 

  • Bothe H (1970) Photosynthetische Stickstoffixierung mit einem zellfreien Extrakt aus der Blaualge Anabaena cylindrica. Ber Dtsch Bot Ges 83: 421–432

    Google Scholar 

  • Bothe H (1977) Flavodoxin. In: Trebst A, Avron M (eds) Encyclopedia of plant physiology, New Series, vol 5 Springer, Berlin Heidelberg New York pp 217–221

    Google Scholar 

  • Bothe H, Neuer G (1988) Electron donation to nitrogenase in heterocysts. Methods Enzymol 167: 498–501

    Google Scholar 

  • Bothe H, Nolteernsting U (1975) Pyruvate: dehydrogenase complex, pyruvate: ferredoxin oxidoreductase and lipoic acid content in microorganisms. Arch Microbiol 102: 53–57

    Google Scholar 

  • Bothe H, Falkenberg B, Nolteernsting U (1974) Properties and function of the pyruvate: ferredoxin oxidoreductase from the blue-green alga Anabaena cylindrica. Arch Microbiol 96: 291–304

    Google Scholar 

  • Bothe H, Yates MG, Cannon FC (1983) Physiology, biochemistry and genetics of dinitrogen fixation. In: Läuchli A, Bieleski RL (eds) Encyclopedia of plant physiol, New Series, vol 15. Springer, Berlin Heidelberg New York, pp 242–285

    Google Scholar 

  • Cannon M, Cannon F, Buchanan-Wollaston V, Ally D, Ally A, Beynon J (1988) The nucleotide sequence of the nifJ gene of Klebsiella pneumoniae. Nucl Acid Res 16: 11379–11379

    Google Scholar 

  • Dai H, Kentemich T, Schmitz K, Müller B, Bothe H (1992) Distribution of thioredoxins in heterocysts and vegetative cells of cyanobacteria. J Photochem Photobiol 16: 285–295

    Google Scholar 

  • Eisbrenner G, Bothe H (1979) Modes of electron transfer from molecular hydrogen in Anabaena cylindrica. Arch Microbiol 123: 37–45

    Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56: 340–373

    Google Scholar 

  • Fillat MF, Borrias WE, Weisbeek PJ (1991) Isolation and overexpression in Escherichia coli of the flavodoxin gene from Anabaena PCC 7119. Biochem J 280: 187–191

    Google Scholar 

  • Haselkorn R (1978) Heterocysts. Ann Rev Microbiol 29: 319–344

    Google Scholar 

  • Herdman M, Janvier M, Waterbury JB, Rippka R, Stanier RY, Mandel M (1979) Deoxyribonucleic acid base composition of cyanobacteria. J Gen Microbiol 111: 63–71

    Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignments on a microcomputer. Gene 73: 237–244

    Google Scholar 

  • Houchins JP, Hind G (1982) Pyridine nucleotides and H2 as electron donors to the respiratory and photosynthetic electron transfer chains and to nitrogenase in Anabaena heterocysts. Biochim Biophys Acta 682: 86–96

    Google Scholar 

  • Kerscher L, Oesterhelt D (1981a) Purification and properties of two 2-oxo-acid: ferredoxin oxidoreductases from Halobacterium halobium. Eur J Biochem 116: 587–594

    Google Scholar 

  • Kerscher L, Oesterhelt D (1981b) The catalytic mechanism of 2-oxoacid: ferredoxin oxidoreductases from Halobacterium halobium. Eur J Biochem 116: 595–600

    Google Scholar 

  • Knappe J (1987) Anaerobic dissimilation of pyruvate. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. Am Soc Microbiol, Washington DC, pp 151–155

    Google Scholar 

  • Kreutzer R, Singh M, Klingmüller W (1989) Identification and characterization of the nifH and nifJ promoter regions located on the nif-plasmid pEA3 of Enterobacter agglomerans 333. Gene 78: 101–109

    Google Scholar 

  • Leach CK, Carr NG (1971) Pyruvate: ferredoxin oxidoreductase and its activation by ATP in the blue-green alga Anabaena variabilis. Biochim Biophys Acta 245: 165–174

    Google Scholar 

  • Lockau W, Peterson RB, Wolk CP, Burris RH (1978) Modes of reduction of nitrogenase in heterocysts isolated from Anabaena species. Biochim Biophys Acta 502: 298–308

    Google Scholar 

  • Mortenson LE, Valentine RC; Carnahan JE (1963) Ferredoxin in the phosphoroclastic reaction of pyruvic acid and its relation to nitrogen fixation in Clostridium pasteurianum. J Biol Chem 238: 794–799

    Google Scholar 

  • Neuer G, Bothe H (1982) The pyruvate: ferredoxin oxidoreductase in heterocysts of the cyanobacterium Anabaena cylindrica. Biochim Biophys Acta 216: 358–365

    Google Scholar 

  • Neuer G, Bothe H (1985) Electron donation to nitrogenase in heterocysts of cyanobacteria. Arch Microbiol 143: 185–191

    Google Scholar 

  • Nieva-Gomez D, Roberts GP, Klevickis S, Brill WJ (1980) Electron transport to nitrogenase in Klebsiella pneumoniae. Proc Natl Acad Sci USA 77: 2555–2558

    Google Scholar 

  • Ochman H, Medhora MM, Garza D, Hartl DL (1990) Amplification of flanking regions by inverse PCR. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, New York, pp 219–227

    Google Scholar 

  • Privalle LS, Burris RH (1984) d-Erythrose supports nitrogenase activity in isolated Anabaena sp strain 7120 heterocysts. J Bacteriol 157: 350–356

    Google Scholar 

  • Rowell P, Darling AJ, Amla DV; Stewart WDP (1988) Thioredoxin and enzyme regulation. In: Rogers LJ, Gallon JR (eds) Biochemistry of algae and cyanobacteria. Clarendon, Oxford, pp 201–216

    Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning, 2nd edn, vol 1–3. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sandmann G, Peleto ML, Fillat MF, Lazaro MC, Gomez-Moreno C (1990) Consequences of the iron-dependent formation of ferredoxin and flavodoxin in nitrogen fixation of Anabaena strains. Photosynth Res 26: 119–125

    Google Scholar 

  • Savavedra-Soto LA, Powell GK, Evans HJ, Morris RO (1988) Nucleotide seuqence of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase. Proc Natl Acad Sci USA 85: 8395–8399

    Google Scholar 

  • Schrautemeier B, Böhme H (1987) A distinct ferredoxin for nitrogen fixation isolated from heterocysts of the cyanobacterium Anabaena variabilis. FEBS Lett 184: 304–308

    Google Scholar 

  • Schrautemeier B, Böhme H, Böger P (1984) In vitro studies on pathways and regulation of electron transport to nitrogenase with a cell-free extract from heterocysts of Anabaena variabilis. Arch Microbiol 137: 14–20

    Google Scholar 

  • Shah VK, Stacey G, Brill WJ (1983) Electron transport to nitrogenase. Purification and characterization of pyruvate: flavodoxin oxidoreductase, the nifJ gene product. J Biol Chem 258: 12064–12068

    Google Scholar 

  • Tandeaude Marsac N, Houmard J (1987) Advances in cyanobacterial molecular genetics. In: Fay P, VanBaalen C (eds) The cyanobacteria. Elsevier, Amsterdam New York Oxford, pp 251–302

    Google Scholar 

  • Trebst A, Bothe H (1966) Zur Rolle des Phytoflavins im photosynthetischen Elektronentransport. Ber Dtsch Bot Ges 79: 44–47

    Google Scholar 

  • Uyeda K, Rabinowitz JC (1971a) Pyruvate: ferredoxin oxidoreductase. III. Purification and properties of the enzyme. J Biol Chem 246: 3111–3119

    Google Scholar 

  • Uyeda K, Rabinowitz JC (1971b) Pyruvate: ferredoxin oxidoreductase. Studies on the reaction mechanism. J Biol Chem 246: 3120–3125

    Google Scholar 

  • Walsby AE (1985) The permeability of heterocysts to the gases nitrogen and oxygen. Proc Roy Soc London Ser B 226: 345–367

    Google Scholar 

  • Wolfe RS, O'Kane DJ (1953) Cofactors of the phosphoroclastic reaction of Clostridium butyricum. J Biol Chem 205: 755–765

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, O., Kentemich, T., Zimmer, W. et al. Identification of the nifJ gene coding for pyruvate: ferredoxin oxidoreductase in dinitrogen-fixing cyanobacteria. Arch. Microbiol. 160, 62–67 (1993). https://doi.org/10.1007/BF00258146

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00258146

Key words

Navigation