Skip to main content
Log in

Accuracy of vertebral mineral determination by dual-energy quantitative computed tomography

  • Articles
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Quantitative computed tomography is an established method for the non-invasive assessment of bone mineral content. Scanning with two different X-ray energies allows material-selective image reconstruction and separation on the basis of differing atomic numbers. As proven by chemophysical analysis of 45 bone samples, dual-energy quantitative computed tomography with basis material decomposition allows highly accurate measurement of bone mineral density with an error of 1.4%, independent of fat and soft tissue content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams JE, Chen SZ, Adams PH, Isherwood J (1982) Measurement of trabecular bone mineral by dual energy computed tomography. J Comput Assist Tomogr 6:601

    Google Scholar 

  2. Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21:733

    Google Scholar 

  3. Arnold JS (1973) Amount and quality of trabecular bone in steoporotic vertebral fractures. Clin Endocrinol Metab 2:221

    Google Scholar 

  4. Banzer D, Schneider U, Wegener OH, Oeser H, Peul O (1979) Quantitative Mineralsalzbestimmung im Wirbelkörper mittels Computertomographie. Fortsch Röntgenstr 130:77

    Google Scholar 

  5. Bradley IG, Huang HK, Ledley RS (1978) Evaluation of calcium concentration in bones, from CT scans. Radiology 128:103

    Google Scholar 

  6. Burckhardt R (1973) Diagnose und Therapie der Osteoporose. Münch Med Wochenschr 115:1915

    Google Scholar 

  7. Burgess AE, Colborne B, Zoffmann E (1987) Vertebral trabecular bone: comparison of single and dual energy CT measurement with chemical analysis. J Comput Assist Tomogr 11:506

    Google Scholar 

  8. Cann CE, Genant HK (1980) Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4:493–500

    Google Scholar 

  9. Cann CE, Ettinger B, Genant HK (1985) Normal subjects versus osteoporotics: no evidence using dual energy computed tomography for disproportionate increase in vertebral marrow fat. J Comput Assist Tomogr 9:617

    Google Scholar 

  10. Dunnhill MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. J Pathol Bacteriol 94:275

    Google Scholar 

  11. Faul DD, Couch JL, Cann CE, Boyd DP, Genant HK (1982) Composition-selective reconstruction for mineral content in the axial and appendicular skeleton. J Comput Assist Tomogr 6:202

    Google Scholar 

  12. Genant HK, Cann CE, Pozzi-Mucelli RS, Kanter AS (1983) Vertebral mineral determination by quantitative CT. Clinical feasibility and normative data. J Comput Assist Tomogr 7:554

    Google Scholar 

  13. Genant HK, Cann CE, Ettinger B, Gordan GS, Kolb FO, Reiser U, Arnaud CD (1985) Quantitative computed tomography for spinal mineral assessment: current status. J Comput Assist Tomogr 9:602

    Google Scholar 

  14. Hangartner TN, Overton TR (1982) Quantitative measurement of bone density using gamma-ray computed tomography. J Comput Assist Tomogr 6:1156

    Google Scholar 

  15. Hubbell JH (1982) Photon mass attenuation and energy-absorption coefficients from 1 keV to 20 MeV. Int J Appl Radiat Isot 33:1269

    Google Scholar 

  16. Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13:334

    Google Scholar 

  17. Kalender WA, Klotz E, Süss C (1987) Vertebral bone mineral analysis: an integral approach with CT. Radiology 164:419

    Google Scholar 

  18. Laval-Jeantet AM, Carroll R, Bergot C (1982) Early detection of osteopenia and aging variations of mineral density: an in vitro study. J Comput Assist Tomogr 6:219

    Google Scholar 

  19. Laval-Jeantet AM, Cann CE, Roger B, Dallant P (1984) A postprocessing dual energy technique for vertebral CT densitometry. J Comput Assist Tomogr 8:1164

    Google Scholar 

  20. Laval-Jeantet AM, Laval-Jeantet M, Roger B, Scott C, Delmas PF (1984) Interét et limites de la mésure tomodensitométrique de la minéralisation vertebrale. J Radiol 65:151

    Google Scholar 

  21. Laval-Jeantet AM, Roger B, de Vernejoul MC, Laval-Jeantet M (1985) Testing of dual-energy postprocessing method of QCT densitometry. J Comput Assist Tomogr 9:616

    Google Scholar 

  22. Laval-Jeantet AM, Roger B, Bouysse S, Bergot C, Mazess RB (1986) Influence of vertebral fat content on quantitative CT density. Radiology 159:463

    Google Scholar 

  23. Mazess RB (1983) Errors in measuring trabecular bone by computed tomography to marrow and bone composition. Calcif Tissue Int 35:148

    Google Scholar 

  24. Montner SM, Lehr JL, Oravez WT (1987) Quantitative evaluation of a dual-energy CT system. J Comput Assist Tomogr 11:144

    Google Scholar 

  25. Reiser UJ, Genant HK, Davis CA, Rutt BK, Cann CE (1985) Vertebral mineral determination by quantitative computed tomography (QCT). Accuracy of single and dual energy measurements. 5th international workshop and soft tissue densitometry using computed tomography, Bretton Woods, NH. Oct 14–18, p 20

    Google Scholar 

  26. Richardson ML, Genant HK, Cann CE, Ettinger B, Gordon GS, Kolb FO, Reiser UJ (1985) Assessment of metabolic bone diseases by quantitative computed tomography. Clin Orthop 195:224

    Google Scholar 

  27. Rohloff R, Hitzler H, Arndt W, Frey KW (1982) Vergleichende Messungen des Kalksalzgehaltes spongiöser Knochen mittels Computertomographie und J-125-Photonen-Absorptionsmethode. In: Lissner J, Doppman JL (eds) CT '82. Internationales Computertomographie Symposium Seefeld 28–30 January 1982. Konstanz, p 126

  28. Rohloff R, Hitzler H, Arndt W, Frey KW, Lissner J (1982) Influence of fat content of bone marrow on bone mineral measurements by CT and photon-absorptiometry in trabecular bones. J Comput Assist Tomogr 6:212

    Google Scholar 

  29. Snyder W (1975) Report of the task group on reference man. International congress of radiation protection. Pergamon, Oxford, p 62 (Monograph 23)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is dedicated to Prof. Dr. W. Wenz, University of Freiburg, Germany, for his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinbold, W.D., Adler, C.P., Kalender, W.A. et al. Accuracy of vertebral mineral determination by dual-energy quantitative computed tomography. Skeletal Radiol. 20, 25–29 (1991). https://doi.org/10.1007/BF00243717

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00243717

Key words

Navigation