Skip to main content
Log in

Methionyl aminopeptidase from rat liver: distribution of the membrane-bound subcellular enzyme

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The selective distribution of methionyl aminopeptidase (MAP) among rat liver mitochondria (heavy and light) and microsomes is reported. Several properties of MAP from the three subcellular fractions showed that the enzyme is a typical aminopeptidase able to remove N-terminal methionine from oligopeptides and methionyl-2-naphthylamide but not from Met-Ala-Ser. MAP is a membrane-bound enzyme sensitive to SH-group oxidants and inhibitable by L-methionine but not by usual arylaminopeptidase inhibitors. It is suggested that, MAP may play an important role during protein synthesis in rat liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AANA:

Aminoacyl-2-Naphthylamides (MetNA, AlaNA, etc...)

AApNA:

Aminoacyl-pNitroanilides (MetpNA, AlapNA, etc...)

AANH2 :

L-Aminoacylamides (MetNH2, AlaNH2, etc...)

APase:

Acid Phosphatase

BSA:

Bovine Serum Albumin

DEAF:

Diethylaminoethyl

EDTA:

Ethylenediaminetetraacetic Acid

GDH:

Glutamate Dehydrogenase

MLBK:

Methionyl-Lysyl-Bradykinin (Met-Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg)

MAP:

Methionyl Aminopeptidase

pOHMB:

Sodium p-Hydroxymercuribenzoate

SDS:

Sodium Dodecyl Sulfate

SRA:

Specific Relative Activity

References

  1. McDonald JK, Schwabe C: Intracellular exopeptidases. In: Barrett AJ (ed.) Proteinases in mammalian cells and tissues. North-Holland Publishing Company, Amsterdam, 1977, pp 311–391

    Google Scholar 

  2. Tuppy HC, Nesvadba H: Über die Aminopeptidaseäktivi-tät des Schwangerenserums und Ihre Beziehung zu dessen Vermogen. Oxytoxin zu inaktivieren. Monatsh Chem 88: 977–988, 1957

    Google Scholar 

  3. Hambrok JM, Morgan BA, Rance MJ, Smith CFC: Modes of deactivation of the enkephalins by rat and human plasma and rat brain homogenates. Nature 262: 782–783, 1976

    Google Scholar 

  4. Shimamura M, Hazato T, Iwaguchi T: A new aminopeptidase in monkey cerebral membrane fraction: hydrolysis of enkephalin. Brain Res 445: 350–353, 1988

    Google Scholar 

  5. Burbach JPH, Locher JG, Verhoef J, Wiegant VM, De Kloet ER, de Wield D: Selective conversion of (β-endorphin into peptides related to γ- and α-endorphin. Nature 283: 96–97, 1980

    Google Scholar 

  6. Berg MJ, Marks N: Formation of des-Tyrendorphins 5–17 by a purified cytosolic aminopeptidase of rat brain. J Neurosci Res 11: 313–321, 1984

    Google Scholar 

  7. Guimarães JA, Borges DR, Prado ES, Prado JL: Kininconverting aminopeptidase from human serum. Biochem Pharmacol 22: 3157–3172, 1973

    Google Scholar 

  8. Palmieri FE, Petrelli JJ, Ward PE: Vascular, plasma membrane aminopeptidase M. Metabolism of vasoactive peptides. Biochem Pharmacol 34: 2309–2317, 1985

    Google Scholar 

  9. Orawski AT, Susz JP, Simmons WH: Aminopeptidase P from bovine lung: solubilization, properties and potential role in bradykinin degradation. Mol Cell Biochem 75: 123–132, 1987

    Google Scholar 

  10. Guimaraes JA, Vieira MAR, Camargo MJ, Maack T: Renal vasoconstrictive effect of kinins mediated by Bl-kinin receptors. Eur J Pharmacol 130: 177–185, 1986

    Google Scholar 

  11. Churchill L, Bausback HH, Gerritsen ME, Ward PE: Metabolism of opioid peptides by cerebral microvascular aminopeptidase M. Biochem Biophys Acta 923: 35–41, 1987

    Google Scholar 

  12. Jackson R, Hunter T: Role of methionine in the initiation of haemoglobin synthesis. Nature 227: 672–676, 1970

    Google Scholar 

  13. Wigle DT, Dixon GH: Transient incorporation of methionine at the N-terminus of protamine newly synthesized in trout testis cells. Nature 227: 676–680, 1970

    Google Scholar 

  14. Yoshida A, Lin M: NH2-terminal formylmethionine- and NH2-terminal methionine-cleaving enzymes in rabbits. J Biol Chem 247: 952–957, 1972

    Google Scholar 

  15. Kerwar SS, Weissbach H, Glenner GG: An aminopeptidase activity associated with brain ribosomes. Arch Biochem Biophys 143: 336–337, 1971

    Google Scholar 

  16. Tsunasawa S, Stewart JW, Sherman F: Amino-terminal processing of mutant forms of yeast iso-1-citochrome c. J Biol Chem 260: 5382–5391, 1985

    Google Scholar 

  17. Ben-Bassat A, Bauer K, Chang S-Y, Myambo K, Boosman A, Chang S: Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine ami nopeptidase and its gene structure. J Bacteriol 169: 751–757, 1987

    Google Scholar 

  18. Miller CG, Strauch KL, Kukral AM, Miller JL, Wingfield PT, Mazzei GJ, Werlen RC, Graber P, Movva NR: N-terminal methionine-specific peptidase in Salmonella Typhimurium. Proc Natl Acad Sci USA 84: 2718–2722, 1987

    Google Scholar 

  19. Huang S, Elliott RC, Liu P-S, Koduri RK, Weickmann JL, Lee J-H, Blair LC, Ghosh-Dastidar P, Bradshaw RA, Bryan KM, Einarson B, Kendell RL, Kolacz KH, Saito K: Specificity of cotranslational amino-terminal processing of proteins in yeast. Biochemistry 26: 8242–8246, 1987

    Google Scholar 

  20. Boissel J-P, Kasper TJ, Bunn HF: Cotranslational aminoterminal processing of cytosolic proteins. Cell-free expression of the site-directed mutants of human hemoglobin. J Biol Chem 263: 8443–8449, 1988

    Google Scholar 

  21. Arfin SM, Bradshaw RA: Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry 27: 7979–7984, 1988

    Google Scholar 

  22. Radhakrishna G, Wold F: Rabbit muscle extracts catalyze the specific removal of N-acetylmethionine from acetylated peptides. J Biol Chem 261: 9572–9575, 1986

    Google Scholar 

  23. Sherman F, Stewart JW, Tsunasawa S: Methionine or not methionine at the beginning of a protein. BioEssays 3: 27–31, 1986

    Google Scholar 

  24. Freitas Jr. JO, Termignoni C, Borges DR, Sampaio CAM, Prado JL, Guimaraes JA: Methionine aminopeptidase associated with liver mitochondria and microsomes. Int J Biochem 13: 991–997, 1981

    Google Scholar 

  25. Freitas Jr. JO, Termignoni C, Guimaraes JA: Microsomal methionine aminopeptidase: properties of the detergentsolubilized enzyme. Int J Biochem 17: 1285–1291, 1985

    Google Scholar 

  26. Termignoni C, Freitas Jr. JO, Guimaraes JA, Borges DR, Prado JL: Methionyl-aminopeptidase from rat liver. An Acad bras Cienc 51: 770, 1979

    Google Scholar 

  27. McDonald JK, Barrett AJ: Mammalian proteases. A glossary and bibliography. Academic Press Inc, London, 1986, vol. 2, pp 99

    Google Scholar 

  28. Termignoni C, Freitas Jr. JO, Guimaraes JA: Removal of N-terminal methionine from haemoglobin nascent peptides by a membrane-bound rat liver methionine aminopeptidase. Biochem J 234: 469–473, 1986

    Google Scholar 

  29. Chambers JA, Richwood D: Fractionation of subcellular organelles by differential centrifugation. In: D Richwood (ed.) Centrifugation: a practical approach. International Retrieval, London, 1979, pp 33–46

    Google Scholar 

  30. De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F: Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat liver tissue. Biochem J 60: 604–617, 1955

    Google Scholar 

  31. Freitas Jr. JO, Guimaraes JA, Borges DR, Prado JL: Two arylamidases from human liver and their kinin-converting activity. Int J Biochem 10: 81–89, 1979

    Google Scholar 

  32. Spector T: Refinement of the Coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for ⩽ 0.5 to 50 μg of protein. Anal Biochem 86: 142–146, 1978

    Google Scholar 

  33. Barrett AJ: A new assay for cathepsin B1 and other thiol proteinases. Anal Biochem 47: 280–297, 1972

    Google Scholar 

  34. Erlanger BF, Kokowsky N, Cohen W: The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95: 271–278, 1961

    Google Scholar 

  35. Chaney AL, Marbach EP: Modified reagents for determination of urea and ammonia. Clinical Chem 8: 130–132, 1962

    Google Scholar 

  36. Alonso N, Hirs CHW: Automation of simple application in amino acid analyzers. Anal Biochem 23: 272–288, 1968

    Google Scholar 

  37. Bergmeyer HU: Neues Werte für die molaren ExtinktionKoeffizienten von NADH and NADH zum Gebrauch im Routine-Laboratorium. Z Klin Chem Klin Biochem 13: 507–508, 1975

    Google Scholar 

  38. Swanson M: Glucose-6-phosphatase from liver. Methods in Enzymology 2: 541–543, 1955

    Google Scholar 

  39. Araújo PS, Mieis V, Miranda O: Subcellular distribution of low- and high-molecular weight acid phosphatases. Biochem Biophys Acta 452: 121–130, 1976

    Google Scholar 

  40. Makinen PL, Raekallio J, Makinen KK: On the localization of aminopeptidase B and separation of its two molecular forms by automated recycling chromatography. Acta Chem Scand 24: 1101–1102, 1970

    Google Scholar 

  41. Kenny AJ: Proteinases associated with cell membranes. In: AJ Barrett (ed.) Proteinases in mammalian cells and tissues. North-Holland Publishing Company, Amsterdam, 1977 pp 393–444

    Google Scholar 

  42. Maroux S, Louvard D, Baratti J: The aminopeptidase from hog intestinal brush border. Biochem Biophys Acta 321: 282–295, 1973

    Google Scholar 

  43. Donlon J, Fottrell PF: Purification and characterization of one of the forms of peptide hydrolases from guinea-pig intestinal mucosa. Biochem Biophys Acta 327: 425–436, 1973

    Google Scholar 

  44. Borges DR, Prado JL, Guimaraes JA: Characterization of kinin-converting arylaminopeptidase from human liver. Naunyn-Schmiedeberg's Arch Pharmacol 281: 403–414, 1974

    Google Scholar 

  45. Alves KB, Brandi CMW, Souza-Pinto JC, Guimaraes JA: Kinin-converting aminopeptidase from human urine. Further purification and characterization through kinetic and inhibitory studies. Int J Biochem 16: 1295–1300, 1984

    Google Scholar 

  46. Suda H, Yamamoto K, Aoygi T, Umezawa H: Purification and properties of N-formylmethionine aminopeptidase from rat liver. Biochem Biophys Acta 616: 60–67, 1980

    Google Scholar 

  47. Hirel Ph-H, Schmitter J-M, Dessen P, Fayat G, Blanquet S: Extent of the N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc Natl Acad Sci USA 86: 8247–8251, 1989

    Google Scholar 

  48. Yoshida A, Watanabe S, Morris HM: Initiation of rabbit haemoglobin synthesis: methionine and formylmethionine at the N-terminal. Proc Natl Acad Sci USA 67: 1600–1607, 1970

    Google Scholar 

  49. Desnuelle P: intestinal and renal aminopeptidase: a model of a transmembrane protein. Eur J Biochem 101: 1–11, 1979

    Google Scholar 

  50. Antonov VK, Vorotyntseva TI, Bessmertnaya LYa, Mikhailova AG, Zillberman MI: Role of intestinal brush border membrane aminopeptidase N in dipeptide transport. FEBS Lett 171: 227–231, 1984

    Google Scholar 

  51. Bachmair A, Finley D, Varshavsky A: In vivo half-life of a protein is a function of its amino-terminal residue. Science 234: 179–186, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Termignoni, C., Freitas, J.O. & Guimarães, J.A. Methionyl aminopeptidase from rat liver: distribution of the membrane-bound subcellular enzyme. Mol Cell Biochem 102, 101–113 (1991). https://doi.org/10.1007/BF00234568

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234568

Key words

Navigation