Skip to main content
Log in

Free radicals involvement in neurological porphyrias and lead poisoning

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Porphyrias are inherited and acquired diseases of erythroid or hepatic origin, in which there are defects in specific enzymes of the heme biosynthetic pathway. In patients with intermittent acute porphyria and lead poisoning the erythrocytic activities of superoxide dismutase and glutathione peroxidase are reported to be increased. Our studies demonstrated that d-aminolevulinic acid, a heme precursor accumulated in both diseases, undergoes enolization at pH < 7.0 before it autoxidizes. The autoxidation of d-aminolevulinic acid, in the presence or absence of oxyhemoglobin has been proposed as a source of oxy and carbon-centred radicals in the cells of intermittent acute porphyria and saturnism carriers. Thus, the increased levels of antioxidant enzymes can be viewed as an intracellular response against the deleterious effects of these extremely reactive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halliwell B, Gutteridge JMC: Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1–14, 1984

    Google Scholar 

  2. Halliwell B, Gutteridge JMC: The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med 8: 89–193, 1985

    Google Scholar 

  3. Hammond B, Kontos HA, Hess ML: Oxygen radicals in the adult respiratory distress syndrome, in myocardial ischemia and reperfusion injury, and in cerebral vascular damage. Can J Physiol Pharmacol 63: 173–187, 1985

    Google Scholar 

  4. Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harman D: Oxygen Radicals and Human Disease. Ann Intern Med 107: 526–545, 1987

    Google Scholar 

  5. Ribarov SR, Benov LC, Benchev IC: The effect of lead on hemoglobin-catalyzed lipid peroxidation. Biochim Biophys Acta 664: 453–459, 1981

    Google Scholar 

  6. Ito Y, Murai Y, Niiya Y, Nagao F, Aritaki M, Koide T, Kanosi Y, Otani M, Shima S, Sarai S: Studies on Serum Lipid Peroxides and Superoxide Dismutase Activities of Workers Exposed to Lead. J Science of Labour 60: 53–64, 1984

    Google Scholar 

  7. Ito Y, Niigya Y, Kurita H, Shima S, Sarai S: Serum Lipid Peroxide Level and Blood Superoxide Dismutase Activity in Workers with Occupational Exposure to Lead. Int Arch Occup Environ Health 56: 119–128, 1985

    Google Scholar 

  8. Medeiros MHG, Marchiori PE, Bechara EJH: Superoxide Dismutase, Glutathione Peroxidase and Catalase Activities in the Erythrocytes of Patients with Intermittent Acute Porphyria. Clin Chem 28: 242–243, 1982

    Google Scholar 

  9. Monteiro HP, Abdalla DSP, Arcuri ASA, Bechara EJH: Oxygen Toxicity Related to Exposure to Lead. Clin Chem 31:1673–1676, 1985

    PubMed  Google Scholar 

  10. Hindmarsh JT: The porphyrias: Recent Advances. Clin Chem 32: 1255–1263, 1986

    Google Scholar 

  11. Farant JP, Wigfield DC: Biomonitoring lead exposure with delta-aminolevulinate dehydratase (ALA-D) activity ratios. Int Arch Occup Environ Health 51: 15–24, 1982

    Google Scholar 

  12. McGillion FB, Thompson GG, Goldberg A: Tissue uptake of d-aminolevulinic acid. Biochem Pharmacol 24: 299–301, 1975

    Google Scholar 

  13. Schreiber WE: Iron, porphyrin, and bilirubin metabolism. In: Kaplan LA, Pesce AJ (eds) Clinical Chemistry-Theory, Analysis and Correlation. The C.V. Mosby Company, St. Louis, 1989, pp 496–511

    Google Scholar 

  14. Marsh DO: The neurotoxicity of mercury and lead. In: O'Donoghue JL (ed) Neurotoxicity of Industrial and Commercial Chemicals. Vol 1, CRC Press, Boca Raton, Florida, 1985, pp 159–169

    Google Scholar 

  15. Monteiro HP, Abdalla DSP, Alario AF, Bechara EJH: Generation of Active Oxygen Species During Coupled Autoxidation of Oxyhemoglobin and d-aminolevulinic Acid. Biochim Biophys Acta 881: 100–106, 1986

    Google Scholar 

  16. Monteiro HP, Abdalla DSP, Augusto O, Bechara EJH: Free Radical Generation during d-aminolevulinic acid autoxidation: induction by hemoglobin and connections with porphyrinpathies. Arch Biochem Biophys 271: 206–216, 1989

    PubMed  Google Scholar 

  17. Fridovich I: Superoxide dismutase in biology and medicine. In: Autor A (ed) Pathology of Oxygen. New York, Academic Press, 1982, pp 1–20

    Google Scholar 

  18. Fridovich I: Superoxide Radical: An endogenous toxicant. Ann Rev Pharmacol Toxicol 23: 239–257, 1983

    Google Scholar 

  19. Halliwell B, Gutteridge JMC: Oxygen Free Radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246: 501–514, 1986

    Google Scholar 

  20. Cadenas E: Biochemistry of Oxygen Toxicity. Ann Rev Biochem 58: 79–110, 1989

    Google Scholar 

  21. Sies H: Biochemistry of oxidative stress. Angew Chem Int Ed Engl 25: 1058–1071, 1986

    Google Scholar 

  22. Fridovich I: Oxygen tocicity in prokaryotes: the importance of superoxide dismutase. In: Oberley LW (ed) Superoxide Dismutase. Vol I. Florida, CRC Press, Boca Raton 1982, pp 79–88

    Google Scholar 

  23. Privalle CT, Gregory EM: Superoxide dismutase and O2 lethality in bacteroides fragilis. J Bacteriol 138: 139–145, 1979

    Google Scholar 

  24. Gregory EM, Fridovich J: Induction of superoxide dismutase by molecular oxygen. J Bacteriol 114: 543–548, 1973

    Google Scholar 

  25. Gregory EM, Goscin SA, Fridovich I: Superoxide dismutase and oxygen toxicity in a eukaryote. J Bacteriol 117: 456–460, 1974

    Google Scholar 

  26. Hassan HM, Fridovich I: Enzymatic defences against the toxicity of oxygen and of streptonigrin in Escherichia coli. J Bacteriol 129: 1574–1583, 1977

    Google Scholar 

  27. Hassan HM, Fridovich I: Regulation of superoxide dismutase synthesis in Escherichia coli. J Biol Chem 252: 7667–7672, 1977

    Google Scholar 

  28. Stevens JB, Autor AP: Induction of superoxyde dismutase by oxygen in neonatal rat lung. J Biol Chem 252: 3509–3514, 1977

    Google Scholar 

  29. Housset B, Junod AF: Effects of culture conditions and hyperoxia and antioxidant enzymes in pig pulmonary artery and aortic endothelium. Biochim Biophys Acta 716: 283–289, 1982

    Google Scholar 

  30. Frank L: Effects of oxygen on the newborn. Federation Proc 44: 2328–2334, 1985

    Google Scholar 

  31. Finn GJ, Condon S: Regulation of catalase synthesis in Salmonella typhimurium. J Bacteriol 123: 570–579, 1975

    Google Scholar 

  32. Richter HE, Loewen PC: Induction of catalase in Escherichia coli by ascorbic acid involves hydrogen peroxide. Biochem Biophys Res Commun 100: 1039–1046, 1981

    Google Scholar 

  33. Crapo JD, Tierney DF: Superoxide dismutase and pulmonary oxygen toxicity. Am J Physiol 226: 1401–1407, 1974

    Google Scholar 

  34. Bhuian KC, Bhuian DK: Mechanism of cataractogenesis induced by 3-amino-1H-1,2,4-Triazole II: Superoxide dismutase of the eye and its role in protecting the ocular lens from oxidative damage by endogenous O2-, H202 and/or-OH. In: Caughey WS (ed) Biochemical and Clinical Aspects of Oxygen. Academic Press, New York. 1979, pp 797–807

    Google Scholar 

  35. Mavelli T, Ciriolo MR, Rotilio G, de Sole P, Castorino M, Stabile A: Superoxyde dismutase, glutathione peroxidase and catalase, in oxidative hemolysis. A study of Fanconi's anemia erythrocytes. Biochem Biophys Res Commun 106: 286–290, 1982

    Google Scholar 

  36. Abdalla DSP, Monteiro HP, Oliveira JAC, Bechara EJH: Activities of superoxide dismutase and glutathione peroxidase in schizophrenic and manic-depressive patients. Clin Chem 32: 805–807, 1986

    Google Scholar 

  37. Murphy MJ, Kehrer JP: Activities of antioxidant enzymes in muscle, liver and lung of chickens with inherited muscular distrophy. Biochem Biophys Res Commun 134: 550–556, 1986

    Google Scholar 

  38. Stocker R, Hunt NH, Weidemann MJ: Antioxidants in plasma from mice infected with Plasmodium, Vinkei. Biochem Biophys Res Commun 134: 152–158, 2q 1986

    Google Scholar 

  39. Kappas A, Sassa S, Anderson KE: The porphyrias. In: Stanbury JB, Wyngaarden JB, Frederickson DS, Goldstein JL, Brown MS (eds) Metabolic Basis of Inherited Diseases. McGraw Hill, New York, 1983, pp 1301–1384

    Google Scholar 

  40. Granick S: The induction in vitro of the synthesis of daminolevulinic acid synthetase in chemical porphyria: A response to certain drugs, sex hormones, and foreign chemicals. J Biol Chem 241: 1359–1375, 1966

    Google Scholar 

  41. Marver HS, Tschudy DP, Perlroth MG, Collins A: d-aminolevulinic acid synthetase. I. Studies in liver homogenates. J Biol Chem 241: 2803–2809, 1966

    Google Scholar 

  42. Marver HS, Collins A, Tschudy DP, Rechcigl M Jr: d-aminolevulinic acid synthetase. II. Induction in rat liver. J Biol Chem 241: 4323–4329, 1966

    Google Scholar 

  43. Strand LJ, Flesher BF, Redeker AG, Marver HS: Enzymatic abnormality in heme biosynthesis in acute intermittent porphyrias: Decreased hepatic conversion of porphobilinogen to porphyrins and increased d-aminolevulinic acid synthetase activity. Proc Natl Acad Sci USA 67: 1315–1320, 1970

    Google Scholar 

  44. McIntyre N, Pearson AJG, Allan DJ, Craske S, West GML, Moore MR, Beattie AD, Paxton J, Goldberg A: Hepatic d-aminolevulinic acid synthetase in an attack of hereditary coproporphyria and during remission. Lancet i: 560–564, 1971

    Article  Google Scholar 

  45. Dowdle EB, Mustard P, Eales L: d-aminolevulinic acid synthetase activity in normal and porphyric human livers. S Afr Med J 41: 1093–1096, 1967

    Google Scholar 

  46. Pirolla BA, Borthwick IA, Srivastava G, May BK, Elliot WH: Effect of lead ions on chick embryo liver mitochondrial d-aminolevulinic acid synthase. Biochem J 222: 627–630, 1984

    Google Scholar 

  47. Sassa S, Urabe A: Uroporphyrinogen I synthase induction in normal human bone marrow cultures: An early and quantitative response of erythroid differentiation. Proc Natl Acid Sci USA 76: 5321–5325, 1979

    Google Scholar 

  48. Rose J, Ikawa Y, Leder P: Globin messenger RNA induction during erythroid differentiation of cultured leukemia cells. Proc Natl Acad Sci USA 69: 3620–3624, 1972

    Google Scholar 

  49. Granick JL, Sassa S, Granick S, Levere RD, Kappas A: Studies in lead poisoning. II. Correlations between the ratio of activated and inactivated d-aminolevulinic acid de hydratase of whole blood and the blood level. Biochem Med 8: 149–159, 1973

    Google Scholar 

  50. Doss M, Schneider J, von Tiepermann R, Brandt A: A new type of acute porphyria with porphobilinogen synthase (daminolevulinic acid dehydratase) defect in the homozygous state. Clin Biochem 15: 52–55, 1982

    Google Scholar 

  51. Romeo G, Levin EY: Uroporphyrinogen III co-synthetase in human congenital erythropoietic porphyria. Proc Natl Acad Sci USA 63: 856–863, 1969

    Google Scholar 

  52. Wada O, Yano Y, Tokoyama K, Suzuki T, Suzuki S, Katsununa H: Human Responses to Lead. In: Special References to Porphyrin Metabolism in Bone Marrow Erythroid Cells, a Clinical and Laboratory Study. Ind Health 10: 84–92, 1972

  53. Bloomer JR, Ebert PS, Mahoney MJ: Study of factors causing excess protoporphyrin accumulation in cultured skin fibroblasts from patients with protoporphyria. J Clin Invest 60: 1354–1361, 1977

    Google Scholar 

  54. Bottomley SS, Tanaka M, Everett MA: Diminished erythroid ferrochelatase activity in protoporphyria. J Lab Clin Med 86: 126–131, 1975

    CAS  PubMed  Google Scholar 

  55. Kinington C, Magnus IA, Ryan EA, Dripps DJ:Porphyria and photosensitivity. Quart. J Med 36: 29–57, 1967

    Google Scholar 

  56. Meyer-Betz F: Studies on the biological (photodynamic) action of haematoporphyrins and other derivatives of the blood and bile pigments. Deutsch Arch Klin Med 112: 476–503, 1913

    Google Scholar 

  57. Goldstein BD, Harber LC: Erythropoietic protoporphyria: Lipid peroxidation and red cell membrane damage associated with photohemolysis. J Clin Invest 51: 892–902, 1972

    CAS  PubMed  Google Scholar 

  58. Bonnett R: Oxygen activation and tetrapyroles. In: Campbell PN, Marshall RD (eds) Essays in Biochemistry. Vol 17. Academic Press, London, 1981, pp 1–51

    Google Scholar 

  59. Spikes JD: Porphyrins and related compounds as photodynamic sensitizers. Ann NY Acad Sci 244: 496–508, 1975

    Google Scholar 

  60. Bodaness RS, Chan PC: Singlet oxygen as a mediator in the hematoporphyrin-catalyzed photooxidation of NADPH to NADP+ in deuterium oxide. J Biol Chem 252: 8554–8560, 1977

    CAS  PubMed  Google Scholar 

  61. Sandberg S, Romslo I: Porphyrin induced photodamage at the cellular and the subcellular level as related to the solubility of the porphyrin. Clin Chim Acta 109: 193–201, 1981

    Article  CAS  PubMed  Google Scholar 

  62. De Goeiji AFPM, Van Steveninck J: Photodynamic effects of protoporphyrin on cholesterol and insaturated fatty acids in erythrocyte membranes in protoporphyria and in normal red blood cells. Clin Chim Acta 68: 115–122, 1976

    Google Scholar 

  63. Matheson IBC, Etheridge RD, Kratovich NR, Lee J: The quenching of singlet oxygen by amino acids and proteins. Photochem Photobiol 21: 165–172, 1975

    Google Scholar 

  64. Schothorst AA, Van Steveninck J, WentLN, Summond D: Photodynamic damage of the erythrocyte membrane caused by protoporphyrin in protoporphyria and in normal red blood cells. Clin Chim Acta 39: 161–170, 1972

    Google Scholar 

  65. Buettner GR, Oberley LW: The apparent production of superoxyde and hydroxyl radicals in hematoporphyrin and light as seen by spintrapping. FEBS Lett 121: 161–164, 1980

    Google Scholar 

  66. Morehouse KM, Moreno SNJ, Mason RP: The one-electron reduction of Uroporphyrin I by rat hepatic microsomes. Arch Biochem Biophys 257: 275–284, 1987

    Google Scholar 

  67. Bloomer JR, Bonkovsky HL: The porphyrias. Dis Mon 35: 1–54, 1989

    Google Scholar 

  68. Cutler MG, Moore MR, Dick JM:Effects of d-aminolevulinic acid on contractile activity of rabbit duodenum. Eur J Pharmacol 64: 221–230, 1984

    Google Scholar 

  69. Becker D, Viljoen D, Kramer S: The inhibition of red cell and brain ATPase by d-aminolevulinic acid. Biochim Biophys Acta 225: 26–34, 1971

    Google Scholar 

  70. Russell VA, Lamm MCL, Taljaard JJF: Inhibition of sodium potassium ATPase activity by Delta-aminolevulinic acid. Neurochem Res 8: 1407–1416, 1983

    Google Scholar 

  71. Dhawan M, Flora SJ, Tandon SK: Preventive and therapeutic role of vitamin E in chronic plumbism. Biomed Environ Sci 2: 335–340, 1989

    Google Scholar 

  72. Brennan MJW, Cantrill RC, Kramer S: Effect of d-aminolevulinic acid on GABA receptor binding in synaptic plasma membranes. Int J Biochem 12: 833–835, 1980

    Google Scholar 

  73. Debler EA, Sershen H, Lajtha A, Gennaro JF Jr: Superoxide radical-mediated alteration of synaptosome membrane structure and high-affinity [14C] gamma-aminobutyric acid uptake. J Neurochem 47: 1804–1813, 1986

    Google Scholar 

  74. Demopoulos HB, Flamm E, Seligman M, Pietronigro DD: Oxygen free radicals in central nervous system ischemia and trauma. In: Autor A (ed) Pathology of Oxygen. Academic Press, New York, 1982, pp 127–155

    Google Scholar 

  75. Colton CA, Fagni L, Gilbert D: The action of hydrogen peroxide on paired pulse and long-term potentiation in the hippocampus. Free Rad Biol Med 7: 3–8, 1989

    Google Scholar 

  76. Bonkovsky HL, Schady W: Neurologic manifestation of acute porphyria. Semin Liver Dis 2: 108–124, 1982

    Google Scholar 

  77. Thornalley PJ, Wolff S, Crabbe J, Stern A: The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalyzed by buffer ions. Biochim Biophys Acta 794: 276–287, 1984

    Google Scholar 

  78. Thornalley PJ, Stern A: The production of free radicals during the autoxidation of monosaccharides by buffer ions. Carbohyd Res 134: 191–204, 1984

    Google Scholar 

  79. Buettner GR: Spin trapping: ESR parameters of spin adducts. Free Radical Biol Med 3: 259–303, 1987

    Google Scholar 

  80. Medeiros MHG, Bechara EJH: Chemiluminescent aerobic oxidation of protein adducts with glycolaldehyde catalysed by horseradish peroxidase. Arch Biochem Biophys 248: 433–439, 1986

    Google Scholar 

  81. Goyer RA: Toxic Effects of Metals. In: Klaassen CD, Amdur MO, Doull J (eds) Toxicology the basic science of poisons. Macmillan Publishing Co, New York, 1986, pp 582–635

    Google Scholar 

  82. Hasan J, Vihko V, Henberg S: Deficient red cell membrane (Na+/K+(ATPase in lead poisoning. Arch Environ Health 14: 313–324, 1967

    Google Scholar 

  83. Levander OA, Morris VC, Higgs DJ, Ferreti RJ: Lead poisoning in vitamin E-deficient rats. J Nutr 105: 1481–1485, 1975

    Google Scholar 

  84. Ribarov SR, Bochev P: Lead-hemoglobin interaction as a possible source of reactive oxygen apecies — a chemiluminescent study. Arch Biochem Biophys 213: 288–292, 1982

    Google Scholar 

  85. Castro CE, Wade RA, Belser NO: Conversion of oxyhemoglobin to methemoglobin by organic and inorganic reductants. Biochemistry 17: 225–231, 1978

    Google Scholar 

  86. Kawanishi S, Caughey WS: Aquopentacyanoferrate (11): An effective probing electron donor in the conversion of oxyhemoglobin to methemoglobin and peroxide. Biochem Biophys Res Commun 88: 1203–1208, 1979

    Google Scholar 

  87. Winterbourn CC: Free radical production and oxidative reactions of hemoglobin. Environ Health Persp 64: 321–330, 1985

    Google Scholar 

  88. Wallace WJ, Houtchens RA, Maxwell JC, Caughey WS: Mechanism of autoxidation of hemoglobins and myoglobins promotion of superoxide production by protons and anions. J Biol Chem 257: 4966–4977, 1982

    Google Scholar 

  89. Bates DA, Winterbourn CC: Reactions of adriamycin with haemoglobin. Biochem J 203: 105–110, 1982

    Google Scholar 

  90. Winterbourn CC: The reaction of hemoglobin with paraquat radicals in the presence and absence of oxygen. Biochem Internatl 7: 1–8, 1983

    Google Scholar 

  91. Dershwitz M, Novak RF: Generation of superoxide via the interaction of nitrofurantoin with oxyhemoglobin. J Biol Chem 257: 75–79, 1982

    Google Scholar 

  92. Goldberg B, Stern A: Production of superoxyde anion during the oxidation of hemoglobin by menadione. Biochim Biophys Acta 437: 628–632, 1976

    Google Scholar 

  93. Thornalley PJ, Wolff SP, Crabbe MJC, Stern A: The oxidation of oxyhaemoglobin by glyceraldehyde and other simple monosaccharides. Biochem J 217: 615–622, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteiro, H.P., Bechara, E.J.H. & Abdalla, D.S.P. Free radicals involvement in neurological porphyrias and lead poisoning. Mol Cell Biochem 103, 73–83 (1991). https://doi.org/10.1007/BF00229595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229595

Key words

Navigation